<p>[[Lymphocytes#T cells|T cells]] leave the lymph node in '''attack mode''' to locate the infectious organism. The surface molecule L-selectin (which allows the naive lymphocyte to enter the lymph node via an [[Lymph Nodes - Anatomy & Physiology#High endothelial venules|HEV]]) is replaced by the adhesion molecule VLA-4. At the site of inflammation, the VLA-4 receptor recognises VCAM-1 on endothelial cells and the [[Lymphocytes#T cell|T cell]] enters the site of disease. [[Lymphocytes#Helper CD4+|CD4+ T cells]] search for infected macrophages and [[Lymphocytes#Cytotoxic CD8+|CD8+ T cells]] look for virus infected cells creating an immune response. After the infection has been defeated, memory cells develop which express L-selectin (rather than VLA-4) and continue to search the body in surveillance mode in case the host is re-infected with the disease producing organism. | <p>[[Lymphocytes#T cells|T cells]] leave the lymph node in '''attack mode''' to locate the infectious organism. The surface molecule L-selectin (which allows the naive lymphocyte to enter the lymph node via an [[Lymph Nodes - Anatomy & Physiology#High endothelial venules|HEV]]) is replaced by the adhesion molecule VLA-4. At the site of inflammation, the VLA-4 receptor recognises VCAM-1 on endothelial cells and the [[Lymphocytes#T cell|T cell]] enters the site of disease. [[Lymphocytes#Helper CD4+|CD4+ T cells]] search for infected macrophages and [[Lymphocytes#Cytotoxic CD8+|CD8+ T cells]] look for virus infected cells creating an immune response. After the infection has been defeated, memory cells develop which express L-selectin (rather than VLA-4) and continue to search the body in surveillance mode in case the host is re-infected with the disease producing organism. |