1,359 bytes added ,  12:30, 17 August 2012
no edit summary
Line 1: Line 1: −
Also know as: '''''Encephalitic Bovine Herpesvirus Type 5 or Type 1 infection in cattle — [[Infectious Bovine Rhinotracheitis]] — [[Infectious Pustular Vulvovaginitis]] — Infectious Pustular Balanoposthitis — IPB'''''
+
{{OpenPagesTop}}
 +
{{Podcasts
 +
|link = http://media.bloomsburymediacloud.org/podcasts/wikivet-english/bovine-herpesvirus-1
 +
}}
 +
Also know as: '''''BHV-1 — Encephalitic Bovine Herpesvirus Type 5 or Type 1 infection in cattle — [[Infectious Bovine Rhinotracheitis]] — [[Infectious Pustular Vulvovaginitis]] — Infectious Pustular Balanoposthitis — IPB'''''
    
== Introduction ==
 
== Introduction ==
Line 7: Line 11:     
== Distribution ==
 
== Distribution ==
BHV-1 is distributed '''worldwide''' and has been diagnosed in all countries tested<ref name="Straub">Straub, O. C (1990) '''Infectious bovine rhinotracheitis virus'''. Virus infections of ruminants,71-108;10</ref>.
+
BHV-1 is distributed '''worldwide''' and has been diagnosed in all countries tested<ref name="Straub">Straub, O. C (1990) '''Infectious bovine rhinotracheitis virus'''. ''Virus infections of ruminants,'' 71-108;10</ref>.
   −
In recent years, a few European countries have successfully eradicated the infection by applying a strict culling policy, e.g. Denmark, Sweden, Finland, Switzerland and Austria (OIE, 2005). Other countries have started similar control programmes.  
+
In recent years, a few European countries have successfully eradicated the infection by applying a strict culling policy, e.g. Denmark, Sweden, Finland, Switzerland and Austria. <ref name="OIE 2005">OIE (2005) '''Terrestrial Animal Health Code'''. Paris, France: ''Office International Des Epizooties'', Chapter 2.3.5.</ref> Other countries have started similar control programmes.  
    
The condition is '''endemic in the UK'''.
 
The condition is '''endemic in the UK'''.
Line 20: Line 24:     
== Signalment ==
 
== Signalment ==
The natural hosts are '''bovine species'''. BHV-1 has a narrow species specificity. The truly susceptible species can be defined as animals in which BHV-1 can establish a latent infection such as cattle and sheep<ref>Thiry, E et al., (2001). '''Risk evaluation of cross-infection of cattle with ruminant alphaherpesviruses related to bovine herpesvirus type 1.''' In: Körber R, ed. Tagungsbeiträge, 3. ''Internationales Symposium zur BHV-1- und BVD-Bekämpfung'', Stendal, in press</ref>, goats<ref> Six, A., Banks, M., Engels, M., Bascunana, C. R., Ackermann, M (2001) '''Latency and reactivation of bovine herpesvirus 1 (BHV-1) in goats and of caprine herpesvirus 1 (CapHV-1) in calves'''. Archives of Virology, 146(7):1325-1335; 38</ref> and other species belonging to the subfamily ''Bovidae''.
+
The natural hosts are '''bovine species'''. BHV-1 has a narrow species specificity. The truly susceptible species can be defined as animals in which BHV-1 can establish a latent infection such as cattle and sheep<ref>Thiry, E et al., (2001). '''Risk evaluation of cross-infection of cattle with ruminant alphaherpesviruses related to bovine herpesvirus type 1.''' In: Körber R, ed. Tagungsbeiträge, 3. ''Internationales Symposium zur BHV-1- und BVD-Bekämpfung'', Stendal, in press</ref>, goats<ref> Six, A., Banks, M., Engels, M., Bascunana, C. R., Ackermann, M (2001) '''Latency and reactivation of bovine herpesvirus 1 (BHV-1) in goats and of caprine herpesvirus 1 (CapHV-1) in calves'''. ''Archives of Virology'', 146(7):1325-1335; 38</ref> and other species belonging to the subfamily ''Bovidae''.
    
Outbreaks are most often seen in cattle between '''6 and 18 months''' of age though all ages of cattle are susceptible. Calves are usually protected by colostral antibodies until 3-4 months of age so infection before this point is uncommon.
 
Outbreaks are most often seen in cattle between '''6 and 18 months''' of age though all ages of cattle are susceptible. Calves are usually protected by colostral antibodies until 3-4 months of age so infection before this point is uncommon.
    
== Clinical Signs ==
 
== Clinical Signs ==
Signs of IBR include '''coughing, serous nasal discharge, tachypnoea and dyspnoea'''. There may also be signs of increased lacrimation and a '''marked conjunctivitis'''. Coughing and sneezing are observed. The virus is excreted in the nasal secretions as early as 24 hours after infection. After an incubation period of 2 to 4 days, nasal secretions are more profuse and evolve from '''sero-mucous to mucopurulent discharge'''. The animal will usually be '''pyrexic''' and be weak, dull and depressed. It will usually have a reduced appetite and may show signs of weight loss. If in milk, the yield will be decreased. Young animals show ptyalism.
+
Signs of IBR vary with each particular strain but classically include '''coughing, serous nasal discharge, tachypnoea and dyspnoea'''. There may also be signs of increased '''lacrimation''' and a '''marked conjunctivitis'''. Coughing and sneezing are observed. The virus is excreted in the nasal secretions as early as 24 hours after infection. After an incubation period of 2 to 4 days, nasal secretions are more profuse and evolve from '''sero-mucous to mucopurulent discharge'''. The animal will usually be '''pyrexic''' and be weak, dull and depressed. It will usually have a reduced appetite and may show signs of weight loss. If in milk, the yield will be decreased. Young animals show ptyalism. In endemic dairy herds, it is not uncommon for animals to present with '''milk drop''' with or without pyrexia.
   −
IBR may cause '''abortion''' if susceptible cows or heifers are infected during pregnancy.  Abortion is observed between '''4 and 8 months of gestation'''. Early embryonic death can also occur. Abortion is a consequence of '''respiratory infection of pregnant cows'''. Viraemia allows the virus to enter the uterine artery and cross the placenta. Abortion is due to a '''lytic infection''' of the fetus. All internal organs of the fetus, especially the '''liver and renal cortex''', show foci of necrosis. A generalized multifocal necrosis is diagnosed.<ref> Smith, K. C (1997) '''Herpesviral abortion in domestic animals'''. Vet Journal, 153(3):253-268</ref> Infection of cows during the last trimester of gestation can lead to '''neonatal death''', and death of weak calves can occur during the first 2 weeks of life.<ref> Thiry, E., Detilleux, P., Vriese, A., Pirak, M., Pastoret, P-P (1984) '''Infectious bovine rhinotracheitis in the neonatal period: a review and a case report.''' Annales de Médecine Vétérinaire, 128(1):33-40; 25</ref>
+
IBR may cause '''abortion''' if susceptible cows or heifers are infected during pregnancy.  Abortion is usually observed between '''4 and 8 months of gestation'''. Early embryonic death can also occur. Abortion is a consequence of '''respiratory infection of pregnant cows'''. Viraemia allows the virus to enter the uterine artery and cross the placenta. Abortion is due to a '''lytic infection''' of the fetus. All internal organs of the fetus, especially the '''liver and renal cortex''', show foci of necrosis. A generalized multifocal necrosis is diagnosed.<ref> Smith, K. C (1997) '''Herpesviral abortion in domestic animals'''. ''Vet Journal'', 153(3):253-268</ref> Infection of cows during the last trimester of gestation can lead to '''neonatal death''', and death of weak calves can occur during the first 2 weeks of life.<ref> Thiry, E., Detilleux, P., Vriese, A., Pirak, M., Pastoret, P-P (1984) '''Infectious bovine rhinotracheitis in the neonatal period: a review and a case report.''' ''Annales de Médecine Vétérinaire'', 128(1):33-40; 25</ref>
   −
'''Latent infection can occur''', the viral cells residing in the '''trigeminal nerve''', and infected cattle can then shed the virus intermittently.  
+
'''Latent infection can occur''', the viral cells residing in the '''trigeminal nerve''', and infected cattle can then shed the virus intermittently particularly after stressful episodes.  
Other animals recover within 14 days, due to the rise of the specific immune response. Some highly virulent BHV-1 strains induce a high mortality rate.
+
Other animals recover within 14 days, due to the rise of the specific immune response. Becoming latent is a common sequelae to infection and in terms of control, all animals on an endemic farm should be considered as potential latent carriers irrespective of their antibody status. Some highly virulent BHV-1 strains induce a high mortality rate.  
   −
In IPV, signs will include '''pain of the vagina or penis''' and erythrematous swelling of this region, reluctance to mate, mucous discharge from the vulva or penis and signs of '''ulcers, vesicles and erosions''' on the penis or vagina. The animal may urinate frequently and have an elevated tail.  
+
In IPV, signs will include '''pain of the vagina or penis''' and erythrematous swelling of this region, reluctance to mate, mucous discharge from the vulva or penis and signs of '''ulcers, vesicles and erosions''' on the penis or vagina. The animal may urinate frequently and have an elevated tail.
    
== Pathology ==
 
== Pathology ==
'''Ulcers and redness''' are visible on the '''nasal mucosa''', in the pharynx and trachea. Lesions are usually restricted to the '''upper respiratory tract'''. [[Bronchitis]] and [[:Category:Pneumonia|pneumonia]] can also be observed, but usually as a consequence of secondary bacterial infections. Respiratory mucosae are red and oedematous, foci of ulcers are observed and some lesions are haemorrhagic<ref>Gibbs, E. P. J., Rweyemamu, M. M (1977) '''Bovine herpesviruses. Part I. Bovine herpesvirus 1.''' Veterinary Bulletin, 47:317-343.</ref> <ref name="Straub" />
+
'''Ulcers and redness''' are visible on the '''nasal mucosa''', in the pharynx and trachea. Lesions are usually restricted to the '''upper respiratory tract'''. [[Bronchitis]] and [[:Category:Pneumonia|pneumonia]] can also be observed, but usually as a consequence of secondary bacterial infections. Respiratory mucosae are red and oedematous, foci of ulcers are observed and some lesions are haemorrhagic.<ref>Gibbs, E. P. J., Rweyemamu, M. M (1977) '''Bovine herpesviruses. Part I. Bovine herpesvirus 1.''' ''Veterinary Bulletin', 47:317-343.</ref> <ref name="Straub" />
    
'''Infectious pustular vulvovaginitis (IPV) ''' and '''infectious pustular balanoposthitis (IPB)''' is a pustular inflammation causing the genital mucosa to become red and oedematous with '''vesicles and pustules evolving into ulcers.'''
 
'''Infectious pustular vulvovaginitis (IPV) ''' and '''infectious pustular balanoposthitis (IPB)''' is a pustular inflammation causing the genital mucosa to become red and oedematous with '''vesicles and pustules evolving into ulcers.'''
Line 42: Line 46:  
An outbreak of acute respiratory disease with profuse nasal discharge, fever and depression suggests IBR. In a naive herd, the epidemic progresses quickly and respiratory signs are associated with neonatal deaths and abortions at 4 to 8 months of pregnancy. Hypovirulent strains can circulate without obvious clinical signs. The IPV form is suspected if animals have vesicular and pustular lesions of the genital mucosa and there is evidence of venereal transmission.
 
An outbreak of acute respiratory disease with profuse nasal discharge, fever and depression suggests IBR. In a naive herd, the epidemic progresses quickly and respiratory signs are associated with neonatal deaths and abortions at 4 to 8 months of pregnancy. Hypovirulent strains can circulate without obvious clinical signs. The IPV form is suspected if animals have vesicular and pustular lesions of the genital mucosa and there is evidence of venereal transmission.
   −
In a laboratory, the '''virus can be isolated from nasal or vaginal swabs''', or from triturated tissue. BHV-1 DNA can also be detected by '''polymerase chain reaction (PCR).'''  
+
In a laboratory, the '''virus can be isolated from nasal or vaginal swabs''', or from triturated tissue. BHV-1 DNA can also be detected by '''polymerase chain reaction (PCR).''' In an individual animal, '''paired serology''' is useful with a raised antibody response seen two weeks after clinical signs.
    
'''[[ELISA testing|ELISAs]]''' have also been developed to detect BHV-1 antibodies in '''bulk milk''', or in milk samples from individual cows. Milk ELISAs have been found to perform well when compared with standard serum ELISAs.
 
'''[[ELISA testing|ELISAs]]''' have also been developed to detect BHV-1 antibodies in '''bulk milk''', or in milk samples from individual cows. Milk ELISAs have been found to perform well when compared with standard serum ELISAs.
   −
In IBR control programmes, serological diagnosis aims to identify latently infected animals. However, a few animals are seronegative latent carriers (SNLC), i.e. they are latently infected with BHV-1 without detectable antibodies. <ref>Lemaire, M., Meyer, G., Baranowski, E., Schynts, F., Wellemans, G., Kerkhofs, P., Thiry, E (2000) '''Effects of bovine herpesvirus type 1 infection in calves with maternal antibodies on immune response and virus latency'''. J Clin Microbiol, 38:1885-1894</ref>
+
In IBR control programmes, serological diagnosis aims to identify latently infected animals. However, a few animals are seronegative latent carriers (SNLC), i.e. they are latently infected with BHV-1 without detectable antibodies. <ref>Lemaire, M., Meyer, G., Baranowski, E., Schynts, F., Wellemans, G., Kerkhofs, P., Thiry, E (2000) '''Effects of bovine herpesvirus type 1 infection in calves with maternal antibodies on immune response and virus latency'''. ''J Clin Microbiol'', 38:1885-1894</ref>
    
== Treatment ==
 
== Treatment ==
 
Supportive treatment is usually required for this condition. If secondary bacterial infection is present then antimicrobials can be used to treat this.
 
Supportive treatment is usually required for this condition. If secondary bacterial infection is present then antimicrobials can be used to treat this.
   −
[[NSAIDs|Nonsteroidal anti-inflammatory compounds]], such as carprofen, are recommended for treatment of pyrexia and for pain relief.
+
[[NSAIDs|Nonsteroidal anti-inflammatory compounds]] are recommended for treatment of pyrexia and for pain relief.
    
== Control ==
 
== Control ==
A '''[[Vaccines|vaccination]]''' is available for control and is widely used. Both '''inactivated and live attenuated''' vaccines are available. The vaccination schedule consists of two vaccinations at a 3-week interval for inactivated vaccines, starting from the age of 3-4 months to avoid interference with colostral antibodies. Live attenuated vaccines are administered either once or twice depending on the type of vaccine. Duration of immunity usually lasts from '''six months to one year'''. Vaccination is recommended for young calves to prevent clinical signs. Vaccination of calves less than 3 months of age can be achieved by intranasal administration of attenuated vaccine. This route is better for overcoming interference due to maternal immunity. Vaccinations should '''protect cattle clinically''' in case of infection and significantly '''reduce the shedding''' of field virus. '''Marker vaccines''' are also available and recommended.  
+
A '''[[Vaccines|vaccination]]''' is available for control and is widely used. Both '''inactivated and live attenuated''' vaccines are available. The vaccination schedule consists of two vaccinations at a 3-week interval for inactivated vaccines, starting from the age of 3-4 months to avoid interference with colostral antibodies. Live attenuated vaccines are administered either once or twice depending on the type of vaccine. Duration of immunity usually lasts from '''six months to one year'''. Vaccination is recommended for young calves to prevent clinical signs. Vaccination of calves less than 3 months of age can be achieved by intranasal administration of attenuated vaccine. This route is better for overcoming interference due to maternal immunity. Vaccinations should '''protect cattle clinically''' in case of infection and significantly '''reduce the shedding''' of field virus. Vaccinating latently infected animals may reduce the level of shedding from this group. '''Marker vaccines''' are also available and recommended. These are based on glycoprotein E (gE) deleted mutants, with detectable antibodies present to the gE antigen in marker vaccinated individuals indicating wild-type viral infection.
    
{{Learning
 
{{Learning
Line 63: Line 67:  
<references/>
 
<references/>
   −
Kaashoek, M. J., Moerman, A., Madic, J., Rijsewijk, F. A. M., Quak, J., Gielkens, A. L. J., Oirschot, J. Tvan (1994) '''A conventionally attenuated glycoprotein E-negative strain of bovine herpesvirus type 1 is an efficacious and safe vaccine.''' Vaccine, 12(5):439-444; 19
+
Kaashoek, M. J., Moerman, A., Madic, J., Rijsewijk, F. A. M., Quak, J., Gielkens, A. L. J., Oirschot, J. Tvan (1994) '''A conventionally attenuated glycoprotein E-negative strain of bovine herpesvirus type 1 is an efficacious and safe vaccine.''' ''Vaccine'', 12(5):439-444; 19
   −
Karstad, L., Jessett, D. M., Otema, J. C., Drevemo, S (1974) '''Vulvovaginitis in wildebeest caused by the virus of infectious bovine rhinotracheitis''' J Wildlife Diseases, 10:392-396.
+
Karstad, L., Jessett, D. M., Otema, J. C., Drevemo, S (1974) '''Vulvovaginitis in wildebeest caused by the virus of infectious bovine rhinotracheitis''' ''J Wildlife Diseases'', 10:392-396.
   −
Lemaire, M., Meyer, G., Baranowski, E., Schynts, F., Wellemans, G., Kerkhofs, P., Thiry, E (2000) '''Production of bovine herpesvirus type 1-seronegative latent carriers by administration of a live-attenuated vaccine in passively immunized calves'''. J Clin Microbiol, 38(11):4233-4238; 43 ref.
+
Lemaire, M., Meyer, G., Baranowski, E., Schynts, F., Wellemans, G., Kerkhofs, P., Thiry, E (2000) '''Production of bovine herpesvirus type 1-seronegative latent carriers by administration of a live-attenuated vaccine in passively immunized calves'''. ''J Clin Microbiol,'' 38(11):4233-4238; 43 ref.
   −
Mars, M. H et al (2000) '''Airborne transmission of bovine herpesvirus 1 infections in calves under field conditions'''. Veterinary Microbiology, 76(1):1-13.
+
Mars, M. H et al (2000) '''Airborne transmission of bovine herpesvirus 1 infections in calves under field conditions'''. ''Veterinary Microbiology'', 76(1):1-13.
   −
Mars, M. H., Bruschke, C. J. M., Oirschot, J. Tvan (199) '''Airborne transmission of BHV 1 [bovine herpesvirus 1], BRSV [bovine respiratory virus], and BVDV [bovine virus diarrhoea virus] among cattle is possible under experimental conditions'''. Veterinary Microbiology, 66(3):197-207; 33
+
Mars, M. H., Bruschke, C. J. M., Oirschot, J. Tvan (199) '''Airborne transmission of BHV 1 [bovine herpesvirus 1], BRSV [bovine respiratory virus], and BVDV [bovine virus diarrhoea virus] among cattle is possible under experimental conditions'''. ''Veterinary Microbiology,'' 66(3):197-207; 33
    
OIE, 2004. '''Manual of Diagnostic Tests and Vaccines for Terrestrial Animals'''. Paris, France: ''World Organisation for Animal Health''. http://www.oie.int/eng/normes/mmanual/A_summry.htm. (accessed April 2011)
 
OIE, 2004. '''Manual of Diagnostic Tests and Vaccines for Terrestrial Animals'''. Paris, France: ''World Organisation for Animal Health''. http://www.oie.int/eng/normes/mmanual/A_summry.htm. (accessed April 2011)
   −
OIE, 2005. '''Terrestrial Animal Health Code'''. Paris, France: ''Office International Des Epizooties'', Chapter 2.3.5.  
+
OIE, 2009. '''World Animal Health Information Database - Version: 1.4'''. ''World Animal Health Information Database''. Paris, France: ''World Organisation for Animal Health''.
 +
 
 +
Van, Oirschot, J. T., Kaashoek, M. J., Rijsewijk, F. A. M (1996) '''Advances in the development and evaluation of bovine herpesvirus 1 vaccines'''. ''Veterinary Microbiol'', 53(1/2):43-54; 60
   −
OIE, 2009. '''World Animal Health Information Database - Version: 1.4'''. ''World Animal Health Information Database''. Paris, France: World Organisation for Animal Health.  
+
Wyler, R., Engels, M., Schwyzer, M (1989) '''Infectious Bovine Rhinotracheitis/Vulvovaginitis (BHV-1). In: Wittmann G, ed. Herpesvirus Diseases of Cattle, Horse and Pigs'''. Massachusetts, USA: ''Kluwer Academic Publishers'', 1-72.
   −
Van, Oirschot, J. T., Kaashoek, M. J., Rijsewijk, F. A. M (1996) '''Advances in the development and evaluation of bovine herpesvirus 1 vaccines'''. Veterinary Microbiol, 53(1/2):43-54; 60
+
{{CABI source
 +
|datasheet = [http://www.cabi.org/ahpc/?compid=3&dsid=91729&loadmodule=datasheet&page=2144&site=160 bovine herpesvirus 1] and [http://www.cabi.org/ahpc/?compid=3&dsid=79283&loadmodule=datasheet&page=2144&site=160 bovine herpesvirus 1 infections]
 +
|date = 3 April 2011
 +
}}
 +
<br><br><br>
   −
Wyler, R., Engels, M., Schwyzer, M (1989) '''Infectious Bovine Rhinotracheitis/Vulvovaginitis (BHV-1). In: Wittmann G, ed. Herpesvirus Diseases of Cattle, Horse and Pigs'''. Massachusetts, USA: ''Kluwer Academic Publishers'', 1-72.
+
{{Nick Lyons
 +
|date = 31 August 2011}}
 +
 
 +
{{OpenPages}}
   −
{{review}}
   
[[Category:Herpesviridae]][[Category:Cattle Viruses]][[Category:Hepatitis, Viral]]
 
[[Category:Herpesviridae]][[Category:Cattle Viruses]][[Category:Hepatitis, Viral]]
[[Category:CABI Expert Review]]
+
 
[[Category:To Do - CABI review]]
+
[[Category:CABI Expert Review Completed]][[Category:CABI AHPC Pages]]
 +
[[Category:Nick Lyons reviewed]]
Author, Donkey, Bureaucrats, Administrators
53,803

edits