| Blood vessels are responsible for supplying the 'petrol' that runs all of mammalian physiology. Without the vasculature to carry blood to and from tissues, they would die in the absence of nutrition and waste removal. It is therefore crucial to consider their structural integrity and utilize their availability when considering any disease process requiring blood-borne healing factors, whether indigenous or introduced. | | Blood vessels are responsible for supplying the 'petrol' that runs all of mammalian physiology. Without the vasculature to carry blood to and from tissues, they would die in the absence of nutrition and waste removal. It is therefore crucial to consider their structural integrity and utilize their availability when considering any disease process requiring blood-borne healing factors, whether indigenous or introduced. |
− | The vasculature makes up the highway network of the body, carrying nutrients to and waste products from all tissues. From the left side of the [[Heart Structure - Anatomy & Physiology|heart]], the aorta exits to empty into the larger arteries, which become arterioles, and then disseminate into the capillary beds that feed the periphery. It is in this place of least resistance that most of the crucial work concerning gas exchange and waste removal takes place. Capillaries then filter into the venous system, with venules linking into veins until blood reaches the vena cava, which carries the now unoxygenated blood to the right side of the heart. This blood travels a reversed, shorter circulatory route through the lungs, where oxygen is picked up in the rich capillary system surrounding the alveoli, returning to the left [[Heart Structure - Anatomy & Physiology|heart]] for circulation around the body. | + | The vasculature makes up the highway network of the body, carrying nutrients to and waste products from all tissues. From the left side of the [[Heart Structure - Anatomy & Physiology|heart]], the aorta exits to empty into the larger arteries, which become arterioles, and then disseminate into the capillary beds that feed the periphery. It is in this place of least resistance that most of the crucial work concerning gas exchange and waste removal takes place. Capillaries then filter into the venous system, with venules linking into veins until blood reaches the vena cava, which carries the now unoxygenated blood to the right side of the heart. This blood travels a reversed, shorter circulatory route through the lungs, where oxygen is picked up in the rich capillary system surrounding the alveoli, returning to the left [[Heart Structure - Anatomy & Physiology|heart]] for circulation around the body.'''''<ref>x</ref>ééħħħħħħêê |