Difference between revisions of "Sample Quiz"
m (Text replace - "[[The Formation of the Filtrate by the Glomerular Apparatus- Anatomy & Physiology" to "[[Glomerular Apparatus and Filtration - Anatomy & Physiology") |
|||
Line 138: | Line 138: | ||
choice3="GFR is the fluid filtered from the glomeruli into Bowman's space, plus the fluid secreted into the nephron, minus the fluid reabsorbed from the nephron into the peritubular capillary network." | choice3="GFR is the fluid filtered from the glomeruli into Bowman's space, plus the fluid secreted into the nephron, minus the fluid reabsorbed from the nephron into the peritubular capillary network." | ||
correctchoice="4" | correctchoice="4" | ||
− | feedback4="'''Correct!''' The GFR is the volume of fluid filtered from the glomeruli into the Bowman's space per unit time. [[ | + | feedback4="'''Correct!''' The GFR is the volume of fluid filtered from the glomeruli into the Bowman's space per unit time. [[Glomerular Apparatus and Filtration - Anatomy & Physiology#Physiological Regulators of GFR|WikiVet Article: GFR]]." |
− | feedback5="'''Incorrect.''' The volume of fluid flowing through the glomerulus per unit time is the rate of blood flow through the glomerulus. The GFR is the volume of fluid filtered from the glomeruli into the Bowman's space per unit time. [[ | + | feedback5="'''Incorrect.''' The volume of fluid flowing through the glomerulus per unit time is the rate of blood flow through the glomerulus. The GFR is the volume of fluid filtered from the glomeruli into the Bowman's space per unit time. [[Glomerular Apparatus and Filtration - Anatomy & Physiology#Physiological Regulators of GFR|WikiVet Article: GFR]]." |
− | feedback1="'''Incorrect.''' The direction of fluid flow is from the glomeruli into Bowman's space. The GFR is the volume of fluid filtered from the glomeruli into the Bowman's space per unit time. [[ | + | feedback1="'''Incorrect.''' The direction of fluid flow is from the glomeruli into Bowman's space. The GFR is the volume of fluid filtered from the glomeruli into the Bowman's space per unit time. [[Glomerular Apparatus and Filtration - Anatomy & Physiology#Physiological Regulators of GFR|WikiVet Article: GFR]]." |
− | feedback2="'''Incorrect.''' The volume of fluid excreted by the kidney per unit time is the urine flow rate. The GFR is the volume of fluid filtered from the glomeruli into the Bowman's space per unit time. [[ | + | feedback2="'''Incorrect.''' The volume of fluid excreted by the kidney per unit time is the urine flow rate. The GFR is the volume of fluid filtered from the glomeruli into the Bowman's space per unit time. [[Glomerular Apparatus and Filtration - Anatomy & Physiology#Physiological Regulators of GFR|WikiVet Article: GFR]]." |
− | feedback3="'''Incorrect.''' The fluid filtered from the glomeruli into Bowman's space, plus the fluid secreted into the nephron, minus the fluid reabsorbed from the nephron into the peritubular capillary network is the volume of fluid excreted by the kidney. The GFR is the volume of fluid filtered from the glomeruli into the Bowman's space per unit time. [[ | + | feedback3="'''Incorrect.''' The fluid filtered from the glomeruli into Bowman's space, plus the fluid secreted into the nephron, minus the fluid reabsorbed from the nephron into the peritubular capillary network is the volume of fluid excreted by the kidney. The GFR is the volume of fluid filtered from the glomeruli into the Bowman's space per unit time. [[Glomerular Apparatus and Filtration - Anatomy & Physiology#Physiological Regulators of GFR|WikiVet Article: GFR]]." |
image= ""> | image= ""> | ||
</WikiQuiz> | </WikiQuiz> | ||
Line 170: | Line 170: | ||
choice3="There is a large amount of protein reabsorbed in the nephron." | choice3="There is a large amount of protein reabsorbed in the nephron." | ||
correctchoice="1" | correctchoice="1" | ||
− | feedback1="'''Correct!''' Most proteins are too large to be filtered and therefore remain in the glomerular capillary. Large proteins are not filtered into Bowman's capsule unless a component of the filtration barrier (e.g. the glomerular basement membrane) is damaged. [[ | + | feedback1="'''Correct!''' Most proteins are too large to be filtered and therefore remain in the glomerular capillary. Large proteins are not filtered into Bowman's capsule unless a component of the filtration barrier (e.g. the glomerular basement membrane) is damaged. [[Glomerular Apparatus and Filtration - Anatomy & Physiology#Glomerular Filtration |WikiVet Article: glomerular filtration]]." |
− | feedback2="'''Incorrect.''' Most proteins are too large to be filtered and therefore remain in the glomerular capillary. Large proteins are not filtered into Bowman's capsule unless a component of the filtration barrier (e.g. the glomerular basement membrane) is damaged in which case the oncotic pressure would be higher than zero. Oncotic pressure in the Bowman's capsule is normally zero because filtered fluid is essentially protein free. [[ | + | feedback2="'''Incorrect.''' Most proteins are too large to be filtered and therefore remain in the glomerular capillary. Large proteins are not filtered into Bowman's capsule unless a component of the filtration barrier (e.g. the glomerular basement membrane) is damaged in which case the oncotic pressure would be higher than zero. Oncotic pressure in the Bowman's capsule is normally zero because filtered fluid is essentially protein free. [[Glomerular Apparatus and Filtration - Anatomy & Physiology#Glomerular Filtration|WikiVet Article: glomerular filtration]]." |
− | feedback5="'''Incorrect.''' There is high hydrostatic pressure in the capillaries causing filtration into the Bowman's space because there is low hydrostatic pressure in the Bowman's space. Oncotic pressure in the Bowman's capsule is normally zero because filtered fluid is essentially protein free. [[ | + | feedback5="'''Incorrect.''' There is high hydrostatic pressure in the capillaries causing filtration into the Bowman's space because there is low hydrostatic pressure in the Bowman's space. Oncotic pressure in the Bowman's capsule is normally zero because filtered fluid is essentially protein free. [[Glomerular Apparatus and Filtration - Anatomy & Physiology#Glomerular Filtration|WikiVet Article: glomerular filtration]]." |
− | feedback4="'''Incorrect.''' Hydrostatic pressure does not directly affect oncotic pressure. Most proteins are too large to be filtered and therefore remain in the glomerular capillary. Large proteins are not filtered into Bowman's capsule unless a component of the filtration barrier (e.g. the glomerular basement membrane) is damaged. Oncotic pressure in the Bowman's capsule is normally zero because filtered fluid is essentially protein free. [[ | + | feedback4="'''Incorrect.''' Hydrostatic pressure does not directly affect oncotic pressure. Most proteins are too large to be filtered and therefore remain in the glomerular capillary. Large proteins are not filtered into Bowman's capsule unless a component of the filtration barrier (e.g. the glomerular basement membrane) is damaged. Oncotic pressure in the Bowman's capsule is normally zero because filtered fluid is essentially protein free. [[Glomerular Apparatus and Filtration - Anatomy & Physiology#Glomerular Filtration|WikiVet Article: glomerular filtration]]." |
− | feedback3="'''Incorrect.''' Large amounts of protein are not capable of being reabsorbed from the nephron back into the blood. Most proteins are too large to be filtered and therefore remain in the glomerular capillary. Large proteins are not filtered into Bowman's capsule unless a component of the filtration barrier (e.g. the glomerular basement membrane) is damaged. Oncotic pressure in the Bowman's capsule is normally zero because filtered fluid is essentially protein free. [[ | + | feedback3="'''Incorrect.''' Large amounts of protein are not capable of being reabsorbed from the nephron back into the blood. Most proteins are too large to be filtered and therefore remain in the glomerular capillary. Large proteins are not filtered into Bowman's capsule unless a component of the filtration barrier (e.g. the glomerular basement membrane) is damaged. Oncotic pressure in the Bowman's capsule is normally zero because filtered fluid is essentially protein free. [[Glomerular Apparatus and Filtration - Anatomy & Physiology#Glomerular Filtration|WikiVet Article: glomerular filtration]]." |
image= ""> | image= ""> | ||
</WikiQuiz> | </WikiQuiz> |
Revision as of 18:15, 9 December 2010
A sample quiz taken from 'Urinary Anatomy and Physiology' section.
1 |
Which of the following structures is NOT a segment of a nephron? |
2 |
What type of epithelium lines the renal pelvis, ureters and urinary bladder? |
3 |
Renal corpuscles are present in which part of the kidney's structure? |
4 |
On which section of the nephron does aldosterone act to stimulate sodium reabsorption? |
5 |
What is the sequence of blood vessels supplying the kidney? |
6 |
Where is the micturition centre located? |
7 |
What happens during the phase of micturition when the parasympathetic nervous system is dominant? |
8 |
The role of the juxtaglomerular apparatus in the kidney is to synthesise and secrete which enzyme? |
9 |
What is the glomerular filtration rate (GFR)? |
10 |
The descending limb of the loop of Henle is freely permeable to which substance(s)? |
11 |
Why is the oncotic pressure in the Bowman's space normally zero? |
12 |
In which segment(s) of the nephron is most of the filtered sodium, chloride and potassium ions reabsorbed? |
13 |
On which section(s) of the nephron does aldosterone act to stimulate sodium reabsorption? |