no edit summary
Line 7: Line 7:     
==Calculation of confidence intervals==
 
==Calculation of confidence intervals==
The calculation of confidence intervals for means or proportions follows the same basic procedure, whereas a slightly different approach is used for other measures such as rates and ratios. Most commonly, confidence intervals will not be calculated manually, but it is useful to know the general approach used. This is based upon the estimation of the '''standard error''' of the parameter in question, which is the the '''standard deviation of the sampling distribution''' of the parameter. That is, if samples of a specified size were taken from the population repeatedly (with replacement after each sampling), the standard deviation of all of these results is the standard error. It is known that with large sample sizes, the sampling distribution will be normally distributed (known as the '''central limit theorem'''), and this distribution can be calculated if the following are known:
+
The calculation of confidence intervals for means or proportions follows the same basic procedure, whereas a slightly different approach is used for other measures such as rates and ratios. Most commonly, confidence intervals will not be calculated manually, but it is useful to know the general approach used. This is based upon the estimation of the '''standard error''' of the parameter in question, which is the the '''standard deviation of the sampling distribution''' of the parameter. That is, if samples of a specified size were taken from the population repeatedly (with replacement after each sampling), the standard deviation of all of these results is the standard error. It is known that with large sample sizes, the sampling distribution will be normally distributed (known as the '''central limit theorem'''), and this distribution can be calculated by dividing the 'standard deviation' of this parameter in the population with the square root of the number of animals sampled (or by dividing the variance with the number of animals sampled, and taking the square root of the result).<br>
* the parameter of interest (proportion, mean, ratio) in the population
+
However, as these parameters in the '''population''' are not known, they must be approximated using data from the '''sample'''.
* the 'standard deviation' of this parameter in the population
  −
* the number of animals sampled
  −
As these parameters in the '''population''' are not known, they must be approximated using data from the '''sample'''.
      
===Approach for means and proportions===
 
===Approach for means and proportions===
The general approach for the calculation of confidence intervals in these cases follows the following steps. The precise methods for means and proportions will be described below:  
+
The general approach for the calculation of confidence intervals in these cases follows the following steps. The method of estimating the sample standard deviation for means and proportions will be described below:  
 
* Calculate the '''sample standard deviation''', as an approximation of the population standard deviation:
 
* Calculate the '''sample standard deviation''', as an approximation of the population standard deviation:
 
* Estimate the '''standard error of the mean''' or proportion by dividing the sample standard deviation by the square root of the number of animals sampled.
 
* Estimate the '''standard error of the mean''' or proportion by dividing the sample standard deviation by the square root of the number of animals sampled.
Line 23: Line 20:     
====Means====
 
====Means====
For continuous variables, calculate the standard deviation of the sample and divide this by the number of animals sampled minus 1.
+
As described [[Data description|earlier]], means are the most appropriate measure of central tendency for normally distributed continuous variables, and the '''standard deviation''' is the most appropriate measure of 'spread' in these cases. An adjusted form of the '''sample standard deviation''' is used to approximate the standard deviation in the population, and is calculated by dividing the sum of the squared differences from the sample mean by the number of animals sampled minus 1, and taking the square root of the answer.
 +
 
 
====Proportions====
 
====Proportions====
For binary variables, estimate the variance of the proportion (calculated as the proportion of positive animals multiplied by the proportion of negative animals) and take the square root of this.
+
Proportions are the most appropriate method of description of [[Data description|categorical and binary]] variables. Although the concept of a 'variance' or 'standard deviation' for these samples is difficult to comprehend, the standard can be calculated by multiplying the proportion of positive animals by the proportion of negative animals, and by taking the square root of this.
   −
===Approach for rates and ratios====
+
===Approach for rates and ratios===
    
[[Category:Veterinary Epidemiology - Statistical Methods|D]]
 
[[Category:Veterinary Epidemiology - Statistical Methods|D]]
700

edits