Line 46: Line 46:  
==Antioxidant enriched diets==
 
==Antioxidant enriched diets==
 
Antioxidant enriched diets have been shown to have short, medium and long term effects on memory and perception in dogs with cognitive dysfunction syndrome<ref>Milgram, N.W., Head, E., Zicker, S.C., Ikeda-Douglas, C.J., Murphey, H., Muggenburg, B., Siwak, C., Tapp, D., Cotman, C.W. (2005) Learning ability in aged beagle dogs is preserved by behavioral enrichment and dietary fortification: a two-year longitudinal study. Neurobiology of Aging. 26. 77–90.</ref> <ref>Milgram, N.W., Head, E., Muggenburg, B., Holowachuka, D., Murphey, H., Estradaa, J., Ikeda-Douglas, C.C., Zickerd, S.C., Cotman, C.W.  (2002) Landmark discrimination learning in the dog: effects of age, an antioxidant fortified food, and cognitive strategy. Neuroscience and Biobehavioral Reviews. 26. 679–695</ref> <ref>Milgram, N.W., Zicker, S.C., Head, E., Muggenburg, B.A., Murphey, H., Ikeda-Douglas, C.J., Cotman, C.W. ( 2002) Dietary enrichment counteracts age-associated cognitive dysfunction in canines. Neurobiology of Aging. 23. 737–745.</ref>.
 
Antioxidant enriched diets have been shown to have short, medium and long term effects on memory and perception in dogs with cognitive dysfunction syndrome<ref>Milgram, N.W., Head, E., Zicker, S.C., Ikeda-Douglas, C.J., Murphey, H., Muggenburg, B., Siwak, C., Tapp, D., Cotman, C.W. (2005) Learning ability in aged beagle dogs is preserved by behavioral enrichment and dietary fortification: a two-year longitudinal study. Neurobiology of Aging. 26. 77–90.</ref> <ref>Milgram, N.W., Head, E., Muggenburg, B., Holowachuka, D., Murphey, H., Estradaa, J., Ikeda-Douglas, C.C., Zickerd, S.C., Cotman, C.W.  (2002) Landmark discrimination learning in the dog: effects of age, an antioxidant fortified food, and cognitive strategy. Neuroscience and Biobehavioral Reviews. 26. 679–695</ref> <ref>Milgram, N.W., Zicker, S.C., Head, E., Muggenburg, B.A., Murphey, H., Ikeda-Douglas, C.J., Cotman, C.W. ( 2002) Dietary enrichment counteracts age-associated cognitive dysfunction in canines. Neurobiology of Aging. 23. 737–745.</ref>.
 +
 +
==Medium Chain Triglycerides==
 +
In human Alzheimer's disease, CNS hypo metabolism may be a target for dietary therapy<ref>Costantini, L.C., Barr, L.J., Vogel, J.L., Henderson, S.T. (2008) Hypometabolism as a therapeutic target in Alzheimer's disease. BMC Neuroscience. 9(Suppl 2). S16.</ref>. Ketone bodies, such as beta-hydroxybutyrate, are a potential supplementary energy source for neurones, and support cells, with impaired oxidative phosphorulation systems. Supplementation with beta-hydroxybutyrate has been shown to improve cognition in human adults with memory impairment<ref>Reger, M.A., Henderson, S.T., Hale, C., Cholerton, B., Baker, L.D., Watson, G.S., Hyde, K., Chapman, D., Craft, S. (2004) Effects of Beta-hydroxybutyrate on cognition in memory-impaired adults. Neurobiology of Aging. 25. 311–314.</ref>. Medium chain triglycerides, which are metabolised to beta-hydroxybutyrate by the liver, have been shown to produce beneficial effects on the cognition of aged dogs<ref>Pan, Y., Larson, B., Araujo, J.A., Lau, W., de Rivera, C., Santana, R., Gore, A., Milgram, N.W. (2010) Dietary supplementation with medium-chain TAG has long-lasting cognition-enhancing effects in aged dogs. British Journal of Nutrition. 103. 1746–1754.</ref>.
    
==References==
 
==References==
694

edits