no edit summary
Line 4: Line 4:  
The hypothalamus is a small area in the ventral diencephalon of the [[Forebrain - Anatomy & Physiology|forebrain]], in the floor of the third ventricle, and is a functional link between the [[Nervous and Special Senses - Anatomy & Physiology#Nervous System|nervous]] and [[Endocrine System Overview - Anatomy & Physiology|endocrine]] systems.
 
The hypothalamus is a small area in the ventral diencephalon of the [[Forebrain - Anatomy & Physiology|forebrain]], in the floor of the third ventricle, and is a functional link between the [[Nervous and Special Senses - Anatomy & Physiology#Nervous System|nervous]] and [[Endocrine System Overview - Anatomy & Physiology|endocrine]] systems.
   −
The hypothalamus controls most of the [[Endocrine Glands - Anatomy & Physiology|endocrine glands]] within the body, largely through stimulation of the [[Pituitary Gland - Anatomy & Physiology|Pituitary Gland]] by secretion of [[Hormones - Anatomy & Physiology#Classifications of Hormones|neurohormones]]. It is a vital regulator of homeostasis, including [[Thermoregulation - Anatomy & Physiology| Thermoregulation]].
+
The hypothalamus controls most of the [[Endocrine System Overview - Anatomy & Physiology|endocrine glands]] within the body, largely through stimulation of the [[Pituitary Gland - Anatomy & Physiology|Pituitary Gland]] by secretion of [[Hormones - Anatomy & Physiology#Classifications of Hormones|neurohormones]]. It is a vital regulator of homeostasis, including [[Thermoregulation - Anatomy & Physiology| Thermoregulation]].
    
==Nuclei==
 
==Nuclei==
Line 58: Line 58:     
#'''''Biological Clock''''' - Light sensed by [[Eye - Anatomy & Physiology|retina]] causes stimulation of neurons leading the the suprachiasmatic nucleus which stimulates the [[Pineal Gland - Anatomy & Physiology|Pineal Gland]] as a result.
 
#'''''Biological Clock''''' - Light sensed by [[Eye - Anatomy & Physiology|retina]] causes stimulation of neurons leading the the suprachiasmatic nucleus which stimulates the [[Pineal Gland - Anatomy & Physiology|Pineal Gland]] as a result.
#'''''Secretory''''' Neurons - ADH and Oxytocin are released by the Supraoptic and Paraventricular nuclei cell bodies. The axons descend into the [[Pituitary Gland - Anatomy & Physiology#Posterior Pituitary Gland|Posterior Pituitary gland]], where they terminate in blood vessels releasing the [[Hormones - Anatomy & Physiology|hormone]] directly into circulation. Thus the posterior pituitary acts as a storage site and is not a true [[Endocrine Glands - Anatomy & Physiology|endocrine gland]].
+
#'''''Secretory''''' Neurons - ADH and Oxytocin are released by the Supraoptic and Paraventricular nuclei cell bodies. The axons descend into the [[Pituitary Gland - Anatomy & Physiology#Posterior Pituitary Gland|Posterior Pituitary gland]], where they terminate in blood vessels releasing the [[Hormones - Anatomy & Physiology|hormone]] directly into circulation. Thus the posterior pituitary acts as a storage site and is not a true [[Endocrine System Overview - Anatomy & Physiology|endocrine gland]].
 
#'''''Hypothalamic Hormones''''' - the hypothalamus releases [[Hormones - Anatomy & Physiology|hormones]] which have an activating or inhibitory effect on their target organ, hence they are named Releasing or Inhibitory Hormones respectively.  
 
#'''''Hypothalamic Hormones''''' - the hypothalamus releases [[Hormones - Anatomy & Physiology|hormones]] which have an activating or inhibitory effect on their target organ, hence they are named Releasing or Inhibitory Hormones respectively.  
 
'''Releasing Hormones''':
 
'''Releasing Hormones''':
Author, Donkey, Bureaucrats, Administrators
53,803

edits