Difference between revisions of "Salmonella"

From WikiVet English
Jump to navigation Jump to search
Line 29: Line 29:
 
*Most motile with flagellae (H antigen)
 
*Most motile with flagellae (H antigen)
 
*H antigen can be in phase 1 or phase 2, depending on a genetic switch allowing for one of the H antigen genes to be transcribed at any one time
 
*H antigen can be in phase 1 or phase 2, depending on a genetic switch allowing for one of the H antigen genes to be transcribed at any one time
 +
  
 
===Classification===
 
===Classification===
Line 111: Line 112:
 
**Die within 48 hours if not treated
 
**Die within 48 hours if not treated
 
**Persistent diarrhoea, meningitis, arthritis or pneumonia may occur in surviving animals
 
**Persistent diarrhoea, meningitis, arthritis or pneumonia may occur in surviving animals
**Can cause in [[Bones - inflammatory#Osteomyelitis|Osteomyelitis]]
 
 
**Found in [[Joints - inflammatory#In Horses|arthritis of horses]]
 
**Found in [[Joints - inflammatory#In Horses|arthritis of horses]]
 
**Can cause haemorrhagic disease by [[General Pathology - Haemostasis#Secondary Thrombocytopenic Disease|secondary thrombocytopenic disease]]
 
**Can cause haemorrhagic disease by [[General Pathology - Haemostasis#Secondary Thrombocytopenic Disease|secondary thrombocytopenic disease]]
Line 120: Line 120:
 
**Septicaemia in neonates; accute enteritis in older calves
 
**Septicaemia in neonates; accute enteritis in older calves
 
**Caused by infection with various ''Salmonella'' serotypes, e.g. ''S.'' Dublin and ''S.'' Typhimurium  
 
**Caused by infection with various ''Salmonella'' serotypes, e.g. ''S.'' Dublin and ''S.'' Typhimurium  
**Chronic infections with ''S.'' Dublin in calves cause dry gangrene and bone lesions
 
 
**An important zoonosis and reportable
 
**An important zoonosis and reportable
 
**Carrier animals important for spread
 
**Carrier animals important for spread
 +
**''Salmonella'' Dublin:
 +
***Causes enterocolitis with blood-stained, foul-smelling diarrhoea containing mucus and epithelial cells
 +
***Can cause fatal septicaemia - fever, depression, drop in milk yield; calves may develope arthritis, meningitis, pneumonia
 +
***Abortion with no other clinical signs
 +
***Chronic infections with ''S.'' Dublin in calves cause dry gangrene of extremities due to disseminated intravascular coagulation
 +
***Can cause [[Bones - inflammatory#Osteomyelitis|Osteomyelitis]] in young animals
 +
***Most survivors become subclinical excretors
 +
***May become latent carriers with no excretion
 
*Salmonellosis in poultry:
 
*Salmonellosis in poultry:
 
**''S.'' Pullorum and ''S.'' Gallinarum now rare in UK due to eradication programs including the Pullorum test (whole blood slide agglutination to detect antibody to both ''S.'' Pullorum and ''S'' Gallinarum)
 
**''S.'' Pullorum and ''S.'' Gallinarum now rare in UK due to eradication programs including the Pullorum test (whole blood slide agglutination to detect antibody to both ''S.'' Pullorum and ''S'' Gallinarum)

Revision as of 12:01, 17 February 2008

BACK TO ENTEROBACTERIACEAE
BACK TO BACTERIA
BACK TO INFECTIOUS AGENTS AND PARASITES


Overview

  • Important member of the enterobacteria
  • Cause disease in humans and animals worldwide
  • Reservior of infection in poulty, pigs, rodents, cattle, dogs
  • Bacteria may be present in water, soil, animal feed, raw meat
  • Cause enteritis and systemic infection (septicaemia and abortion)
  • Salmonella may be carried sub-clinically
  • Some human strains cause enteric fever (S. Typhi causes typhoid), also gastroenteritis, septicaemia or bacteraemia


Characteristics

  • Gram negative bacilli
  • Facultative intracellular pathogens
  • Non-lactose fermentors, oxidase negative
  • Do not produce urease or indole from tryptophan
  • Utilise citrate as a carbon source
  • Reduce nitrates to nitrites
  • Grow on MacConkey
  • Red colonies on brilliant green agar indicating alkalinity
  • Ferment glucose to produce acid and gas
  • Usually produce hydrogen sulphide - red colinies with black centre on XLD agar
  • Most motile with flagellae (H antigen)
  • H antigen can be in phase 1 or phase 2, depending on a genetic switch allowing for one of the H antigen genes to be transcribed at any one time


Classification

  • Single species, Salmonella enterica
  • Over 2400 pathogenic serotypes or serovars identified
  • Grouped into 9 groups according to Somatic, O antigen (lipopolysaccharide) by the Kauffmann-White scheme - determined by slide agglutination of the bacteria with specific antisera
  • Categorised into serovars depending on and H (Flagellar) antigen, e.g. Salmonella enterica subspecies enterica serovar Tymphimurium; must also determine phase of H antigen (isolates must be in phase 1 to be typed)
  • Most animal and human isolates in Groups B to E


Pathogenicity

  • Faecal-oral transmission
  • Infection frequently transmitted from faeces of rodents and birds
  • Young, immunocompromised animals particularly susceptible
  • Comparitively large dose required for infection due to gastric acid, normal intestinal flora and local immunity
  • Enterocolitis:
    • Acute enteritis
    • Bacteria adhere to intestinal epithelial cells in the ileum and colon, probably via fimbrae, O antigen and flagellar H antigen
    • Multiply in and destroy epithelial cells
    • Cytotoxin may cause epithelial cell damage by inhibiting protein synthesis and causing calcium escape from cells
    • Enterotoxin may induce fluid secretion into intestinal lumen
    • Degeneration of microvilli
  • Systemic disease:
    • Bacteria invade and replicate in host cells and resist phagocytosis and destruction by complement
    • Bacteria internalised by intestinal epithelial cells by inducing ruffling of cell membranes and uptake into vesicles
    • The organisms replicate within the vesicles and are released from the cells
    • Stimulate immune response on reaching the lamina propria
    • Acute inflammation, possibly with ulceration; prostaglandin and cytokine production by epithelial cells; enterotoxin production damaging mucosa
    • Phagocytosis of bacteria by neutrophils and macrophages
    • Bacteria either destroyed by the phagocytic cells or survive and multiply in the cells to cause systemic disease
    • Resistance to phagocytosis and destruction by complement allows spread within the body - bacteraemia and septicaemia
    • LPS O antigens prevent damage to bacterial cell wall by complement
    • LPS also causes endotoxaemia, and may contribute to local inflammatory response damaging intestinal cells to cause diarrhoea
    • Endotoxic shock during septicaemic salmonellosis due to LPS
    • Intracellular carriage if bacteria no completely removed
    • Invasive potential of certain strains e.e Salmonella Dublin associated with carriage of a large plasmid, encoding genes to allow intracellular survival in macrophages and also to allow iron acquisition
    • Salmonellae are facultative intracellular organisms, allowing them to move from the gut in macrophages and cause a bacteraemia and lesions throughout the body
    • Possession of Pathogenicity Islands associated with virulence
  • Carriage:
    • Salmonellae can persist in the gut or gall bladder
    • Excreted in faeces after clinical signs disappeared - active carriage
    • Bacteria can survive intracellularly, avoiding the immune system and antimicrobials
    • May have latent carriage and intermittent excretion in faeces
    • Stresses e.g. transportaion, illness, parturition, overcrowding promote excretion in carrier animals and may cause clinical signs to be shown
    • Tortoises, terrapins, snakes and other reptiles ofter carry Salmonellae
    • Asymptomatic carriage allows faecal spread of infection


Clinical infections

  • Zoonotic
  • Outbreaks from contaminated imported meat and bone meal
  • Some serotypes are host-specific, some infect a wide range of species
  • Healthy adult carnivores are resistant to salmonellosis
  • Clinical outcome depends on number of bacteria ingested, virulence of serotype, susceptibility of host
  • Young and debilitated animals susceptible
  • Salmonella serotypes:
    • S. Tymphimurium infects many species; causes severe diarrhoea; non-invasive; causes of food poisoning in humans, e.g. from infected poultry
    • S. enteritidis: non species-specific; losses in young birds; causes food poisoning in humans
    • S. Dublin: invasive serovar; infects cattle
    • S. Cholerae-Suis: primarily infects pigs; also causes severe human disease
    • S. Pullorum: infects poultry; egg-transmitted; causes bacillary white diarrhoea, known as pullorum disease
    • S. Gallinarum: infectes older birds; known as fowl typhoid
    • S. Abortis-ovis: infects sheep
    • S. Abortus-equi: infects horses outside of the UK
    • S. Typhi, S. Paratyphi: infect humans
  • Most human infections contracted from animals, especially poulty and cattle
  • Enteric salmonellosis:
    • Enterocolitis occurs in most farm animal species affecting all ages
    • ulcerative enteritis
    • Fever, depression, anorexia, foul-smelling diarrhoea containing blood, mucus and epithelial casts
    • Dehydration and weight loss
    • Abortion
    • Fatal within days in severely young animals
    • Milder syndrome where endemic on farms, possibly due to acquired immunity
    • Chronic enterocolitis can occur in surviving pigs, cattle, horses, causing intermittent fever, soft faeces and gradual weight loss
  • Septicaemic salmonellosis:
    • Most common in calves, neonatal foals, pigs under one month
    • Sudden onset fever, depression, recumbency
    • Die within 48 hours if not treated
    • Persistent diarrhoea, meningitis, arthritis or pneumonia may occur in surviving animals
    • Found in arthritis of horses
    • Can cause haemorrhagic disease by secondary thrombocytopenic disease
    • S. Cholerae-Suis in pigs causes blue discoloration of ears and snout; co-infection with viruses causes severe clinical forms of disease
  • Bovine Salmonellosis:
    • Syndrome of fever and diarrhoea (with dysentery), often fatal, in calves and adult cattle
    • May cause abortion of pregnant cattle in absence of other signs
    • Septicaemia in neonates; accute enteritis in older calves
    • Caused by infection with various Salmonella serotypes, e.g. S. Dublin and S. Typhimurium
    • An important zoonosis and reportable
    • Carrier animals important for spread
    • Salmonella Dublin:
      • Causes enterocolitis with blood-stained, foul-smelling diarrhoea containing mucus and epithelial cells
      • Can cause fatal septicaemia - fever, depression, drop in milk yield; calves may develope arthritis, meningitis, pneumonia
      • Abortion with no other clinical signs
      • Chronic infections with S. Dublin in calves cause dry gangrene of extremities due to disseminated intravascular coagulation
      • Can cause Osteomyelitis in young animals
      • Most survivors become subclinical excretors
      • May become latent carriers with no excretion
  • Salmonellosis in poultry:
    • S. Pullorum and S. Gallinarum now rare in UK due to eradication programs including the Pullorum test (whole blood slide agglutination to detect antibody to both S. Pullorum and S Gallinarum)
    • These Salmonellae can infect the ovaries of hens and be transmitted via eggs
    • Pullorum disease infects young chickens and turkeys (under 3 weeks); high mortality rates; anorexia, depression, white diarrhoea; white nodules throughout lungs; focal necrosis of liver and spleen
    • Fowl typhoid causes similar lesions to pullorum disease in young birds; septicaemic condition in adult birds with sudden death (enlarged, friable, bole-stained liver and enlarged spleen)
    • Paratyphoid caused by non host-specific Salmonella serotypes, e.g. S. Enteritidis and S. Typhimurium; often subclinical infections


Diagnosis

  • History of previous outbreaks; clinical signs
  • Post mortem: enterocolitis; blood-stained intestinal contents; enlarged mesenteric lymph nodes
  • Laboratory confirmation by detection in faeces and blood from live animals; intestinal contents and tissue samples from dead animals
  • Isolation from blood or tissues confirms septicaemic salmonellosis
  • Heavy growth on plates innoculated with faeces or intestinal contents from infected animals suggests Salmonella as cause
  • Light growth may suggest carrier state
  • Culture specimens on BG and XLD agar; also add to enrichment broth such as selinite or tetrathionate broth; incubate plates and broth under aerobic conditions at 37 degrees centigrade for 48 hours; subculture from enrichment broth at 24 and 48 hours
  • Suspicious colonies should be identified biochemically by reactions in TSI agar and lysine decarboxylase
  • Slide agglutination using antisera for O and H antigens confirm the serotype
  • The antigens in both phases of the H antigen must be identified
  • Phage typing is used for epidemiological studies of isolates
  • A rising antibody titre using paired serum samples in ELISA indicates active infection


Treatment

  • Intravenous antibiotics used to treat septicaemic salmonellosis
  • Effective antimicrobials include tetracyclines, chloramphenicol, trimethoprim-sulphonamides, ampicillin, amoxicillin, 3rd generation cephalosporins, fluoroquinolones, but depend on the susceptiblity of individual isolate
  • Fluid and electrolyte replacent to prevent dehydration and shock


Control

  • Reduce exposure of young animals from fomites, food, water, infected animals
  • Avoid stresses e.g. overcrowding
  • Purchase animals from reliable sources and isolate incoming animals
  • Separate animals according to age
  • Rodent control, good hygiene, pasture rotation
  • Avoid grazing animals on pasture fertilised by slurry for at least 2 months after spreading
  • Attenuated live S. Typhimurium and S. Dublin vaccines used in cattle
  • Avoid oral prophylactic antimicrobials