Changes

Jump to navigation Jump to search
Line 1: Line 1:  
==What is Vitamin B2 (Riboflavin)?==
 
==What is Vitamin B2 (Riboflavin)?==
Vitamin B<sub>2</sub>, also called riboflavin, is an '''essential water-soluble vitamin'''. Riboflavin is absorbed across the intestinal mucosa primarily via [[Active Transport - Physiology|active transport]], with minimal [[Diffusion - Physiology|passive diffusion]]. Intracellular or plasma riboflavin is typically bound to protein. Riboflavin is '''not stored in the body''' and is freely filtered by the [[Nephron Microscopic Anatomy#Proximal Tubule|renal tubules]].  
+
Vitamin B<sub>2</sub>, also called riboflavin, is an '''[[Nutrition Glossary#Essential Nutrients|essential]] water-soluble vitamin'''. Riboflavin is absorbed across the intestinal mucosa primarily via [[Active Transport - Physiology|active transport]], with minimal [[Diffusion - Physiology|passive diffusion]]. Intracellular or plasma riboflavin is typically bound to protein. Riboflavin is '''not stored in the body''' and is freely filtered by the [[Nephron Microscopic Anatomy#Proximal Tubule|renal tubules]].
    
==Why is it Important?==
 
==Why is it Important?==
Riboflavin is a component of the co-enzymes flavin mononucleotide (FMN) and flavin adenine di-nucleotide (FAD)<ref>McCormick DB. Niacin, Riboflavin, and Thiamin. In Biochemical and physiological aspects of human nutrition. 2000 Philadelphia, PA: WB Saunders Company p.469-475.</ref>. It is also an essential component of the enzyme glutathione reductase.
+
Riboflavin is a component of the [[Nutrition Glossary#Coenzyme|co-enzymes]] flavin mononucleotide (FMN) and flavin adenine di-nucleotide (FAD)<ref>McCormick DB. Niacin, Riboflavin, and Thiamin. In Biochemical and physiological aspects of human nutrition. 2000 Philadelphia, PA: WB Saunders Company p.469-475.</ref>. It is also an essential component of the enzyme glutathione reductase.
    
==Roles in the Body==
 
==Roles in the Body==
The [[Nutrition Glossary#Coenzyme|coenzymes]] FMN and FAD are play a catalytic role in redox reactions, such as the conversion of Vitamin A (Retinol) - Nutrition|retinol]] to the active metabolite retinoic acid, [[Tryptophan - Nutrition|tryptophan]] to [[Vitamin B3 (Niacin) - Nutrition|niacin]], and pyruvate to α-ketogluterate, and are cofactors in the electron transport chain. Riboflavin is also a component of the antioxidant enzyme, glutathione reductase.
+
The [[Nutrition Glossary#Coenzyme|coenzymes]] FMN and FAD are play a catalytic role in redox reactions, such as the conversion of [[Vitamin A (Retinol) - Nutrition|retinol]] to the active metabolite retinoic acid, [[Tryptophan - Nutrition|tryptophan]] to [[Vitamin B3 (Niacin) - Nutrition|niacin]], and pyruvate to α-ketogluterate, and are cofactors in the electron transport chain. Riboflavin is also a component of the antioxidant enzyme, glutathione reductase.
    
==Consequences of Riboflavin Deficiency==
 
==Consequences of Riboflavin Deficiency==
Line 12: Line 12:  
Riboflavin deficiency impairs growth rate in puppies<ref>Axelrod AE, et al. The production of uncomplicated riboflavin deficiency in the dogs. Am J Physiol 1940;128:703-708.</ref><ref name="Noel">Noel PR, et al. Riboflavin supplementation in the dog. Res Vet Sci 1972;13:443-450.</ref>, and can result in anorexia, weight loss, weakness, ataxia, collapse, and death<ref>Street HR and Cowgill GR. Acute riboflavin deficiency in the dog. Am J Physiol 1939;125:323-334.</ref>. Bilateral corneal opacities have also been described in adult dogs fed riboflavin deficient diets<ref name="Noel"/>.
 
Riboflavin deficiency impairs growth rate in puppies<ref>Axelrod AE, et al. The production of uncomplicated riboflavin deficiency in the dogs. Am J Physiol 1940;128:703-708.</ref><ref name="Noel">Noel PR, et al. Riboflavin supplementation in the dog. Res Vet Sci 1972;13:443-450.</ref>, and can result in anorexia, weight loss, weakness, ataxia, collapse, and death<ref>Street HR and Cowgill GR. Acute riboflavin deficiency in the dog. Am J Physiol 1939;125:323-334.</ref>. Bilateral corneal opacities have also been described in adult dogs fed riboflavin deficient diets<ref name="Noel"/>.
 
====Cats:====  
 
====Cats:====  
Riboflavin deficiency in cats can resulted in anorexia, weight loss, periauricular alopecia, bilateral cataracts, testicular hypoplasia, fatty accumulation in the liver, and death<ref>Gershoff SN, et al. The effect of the carbohydrate and fat content of the diet upon the riboflavin requirement of the cat. J Nutr 1959;68:75-88.</ref>.
+
Riboflavin deficiency in cats can resulted in anorexia, weight loss, periauricular [[alopecia]], bilateral cataracts, testicular hypoplasia, [[Hepatic Lipidosis|fatty accumulation in the liver]], and death<ref>Gershoff SN, et al. The effect of the carbohydrate and fat content of the diet upon the riboflavin requirement of the cat. J Nutr 1959;68:75-88.</ref>.
Conditions associated with diuresis (e.g., chronic disease, such as renal disease or [[Diabetes Insipidus|diabetes]], or therapeutic intervention, such as intravenous fluids or increased water intake with management of [[Cystitis|lower urinary diseases]]) can result in increased loss of riboflavin and may increase daily requirements. Patients on chronic haemodialysis are also at an increased risk for developing a deficiency.  
+
Conditions associated with diuresis (e.g. chronic disease, such as [[:Category:Kidney - Pathology|renal disease]] or [[Diabetes Insipidus|diabetes]], or therapeutic intervention, such as intravenous fluids or increased water intake with management of [[Cystitis|lower urinary diseases]]) can result in increased loss of riboflavin and may increase daily requirements. Patients on chronic haemodialysis are also at an increased risk for developing a deficiency.  
 
Riboflavin deficiencies can also occur due to low dietary intake and vitamin degradation during cooking especially under alkaline conditions.
 
Riboflavin deficiencies can also occur due to low dietary intake and vitamin degradation during cooking especially under alkaline conditions.
   Line 23: Line 23:     
==Diagnosing Riboflavin Deficiency==
 
==Diagnosing Riboflavin Deficiency==
Diagnosis of riboflavin deficiency is based on a finding of low erythrocyte glutathione reductase activity, although this is not routinely tested for in veterinary reference laboratories. A clinical suspicion arises when there are clinical signs consistent with a riboflavin deficiency and dietary analysis indicates a deficiency.  
+
Diagnosis of riboflavin deficiency is based on a finding of low [[Erythrocytes|erythrocyte]] glutathione reductase activity, although this is not routinely tested for in veterinary reference laboratories. A clinical suspicion arises when there are clinical signs consistent with a riboflavin deficiency and dietary analysis indicates a deficiency.
    
==References==
 
==References==
 
<references/>
 
<references/>
 +
 +
<br>
 +
{{Reviewed Nutrition 1
 +
|date = 22 May 2015}}
 +
{{Waltham}}
 +
{{OpenPages}}
 +
    
[[Category:Vitamins]]
 
[[Category:Vitamins]]
[[Category:To Do - Nutrition]]
  −
[[Category:To Do - Nutrition preMars]]
 
Author, Donkey, Bureaucrats, Administrators
53,803

edits

Navigation menu