Changes

Jump to navigation Jump to search
no edit summary
Line 23: Line 23:  
CAV produces '''three types of proteins''': '''VP1''' (52kDA), '''VP2''' (24 kDA) and '''VP3''' (14 kDA). '''Structural protein VP1''' is the intracellular form of the capsid protein and '''VP2''' is found in small amounts in the '''purified virus'''. Vaccines need to contain both of these to be antigenic. '''VP3''' is involved in '''apoptosis''' which involves the '''programmed and controlled death of a cell'''.  This process does not involve the lysis of the cell and therefore limits damage to surrounding cells and tissues. It also initiates pathogenicity and '''apoptosis of infected stem cells in the bone marrow (BM)''', resulting in damage to the BM.  As a result, the virus '''inhibits the production of red blood cells (RBC), white blood cells (WBC) and platelets.  Lymphoid tissues are also affected'''. Due to its apoptotic properties VP3 has the potential to be an anti-cancer agent. It is '''not considered a zoonosis'''.
 
CAV produces '''three types of proteins''': '''VP1''' (52kDA), '''VP2''' (24 kDA) and '''VP3''' (14 kDA). '''Structural protein VP1''' is the intracellular form of the capsid protein and '''VP2''' is found in small amounts in the '''purified virus'''. Vaccines need to contain both of these to be antigenic. '''VP3''' is involved in '''apoptosis''' which involves the '''programmed and controlled death of a cell'''.  This process does not involve the lysis of the cell and therefore limits damage to surrounding cells and tissues. It also initiates pathogenicity and '''apoptosis of infected stem cells in the bone marrow (BM)''', resulting in damage to the BM.  As a result, the virus '''inhibits the production of red blood cells (RBC), white blood cells (WBC) and platelets.  Lymphoid tissues are also affected'''. Due to its apoptotic properties VP3 has the potential to be an anti-cancer agent. It is '''not considered a zoonosis'''.
   −
CAV is difficult to grow but can be grown in chickens, embryonated eggs and in cell culture. The most commonly used cell line is MDCC-MSB1 (a Marek’s disease transformed chicken lymphocyte cell line) <ref name=" Yuasa, 1983">Yuasa, N. (1983) '''Propagation and infectivity titration of the Gifu-1 strain of chicken anemia agent in a cell line (MDCC-MSB1) derived from Marek's disease lymphoma'''. ''National Institute of Animal Health Quarterly'', Japan, 23(1):13-20; 18 ref. </ref> <ref name=" Goryo et al., 1987"> Goryo, M., Suwa, T., Matsumoto, S., Umemura, T., Itakura, C. (1987) '''Serial propagation and purification of chicken anaemia agent in MDCC-MSB1 cell line'''. ''Avian Pathology'', 16(1):149-163; [7 fig.]; 18 ref. </ref>. Virus production in this way may lead to the potential for Marek’s disease virus contamination of vaccines.
+
CAV is difficult to grow but can be grown in chickens, embryonated eggs and in cell culture. The most commonly used cell line is MDCC-MSB1 (a Marek’s disease transformed chicken lymphocyte cell line). Virus production in this way may lead to the potential for Marek’s disease virus contamination of vaccines.
    
==Signalment==
 
==Signalment==
Line 32: Line 32:     
==Epidemiology==
 
==Epidemiology==
The disease is mainly spread by '''vertical transmission''', which is of particular importance to intensive breeding populations. The '''age''' of the bird has a marked effect on the '''development of clinical signs'''.'''Chicks hatching''' from infected layers of naive flocks (vertical transmission) '''show clinical signs after 10-14 days of age''' over a '''period of 3 to 6 weeks'''. After which the breeder layers develop sufficient CAV antibodies to stop the transmission of the virus to the egg. '''Mortality peaks''' during the '''third week of life''' around 5 to 10% but can be as high as 60%. '''Older chicks''' (>14 days old) that become infected via faecal-oral route (horizontal transmission) '''do not exhibit clinical signs''' but the '''growth and health of the birds may be affected''' <ref name="McNulty et al., 1991">McNulty, M.S., McIlroy, S.G., Bruce, D.W., Todd, D., (1991) '''Economic effects of subclinical chicken anaemia agent infection in broiler chickens.''' ''Avian Diseases,'' 35:263-268. </ref>. Fomites may assist the transmission of the virus.
+
The disease is mainly spread by '''vertical transmission''', which is of particular importance to intensive breeding populations. The '''age''' of the bird has a marked effect on the '''development of clinical signs'''.'''Chicks hatching''' from infected layers of naive flocks (vertical transmission) '''show clinical signs after 10-14 days of age''' over a '''period of 3 to 6 weeks'''. After which the breeder layers develop sufficient CAV antibodies to stop the transmission of the virus to the egg. '''Mortality peaks''' during the '''third week of life''' around 5 to 10% but can be as high as 60%. '''Older chicks''' (>14 days old) that become infected via faecal-oral route (horizontal transmission) '''do not exhibit clinical signs''' but the '''growth and health of the birds may be affected'''. Fomites may assist the transmission of the virus.
    
==Distribution==
 
==Distribution==
Line 40: Line 40:  
Diagnosis can be made on the above clinical signs and '''decreases in haematocrit''' from normal ranges (32-37.5%) to '''below 27%''' and increases in the amount of [[Haematopoiesis - Overview|immature blood cells]].  
 
Diagnosis can be made on the above clinical signs and '''decreases in haematocrit''' from normal ranges (32-37.5%) to '''below 27%''' and increases in the amount of [[Haematopoiesis - Overview|immature blood cells]].  
   −
''' Virus isolation''' can confirm diagnosis of disease but growth of CAV in cell cultures can be difficult. Levels of infection can be estimated by the detection of raising antibody titres and many diagnostic tests have been developed that include  immunoperoxidase staining, [[ELISA testing|ELISA]]<ref name=" Todd et al., 1999">Todd, D., Mawhinney, K.A., Graham, D.A., Scott, A.N.J.,(1999) '''Development of a blocking enzyme-linked immunosorbent assay for the serological diagnosis of chicken anaemia virus'''. ''Journal of Virological Methods'', 82(2):177-184; 17 ref. </ref>, PCR and indirect [[immunofluorescence]]<ref name=" Sun et al., 1999">Sun, W., Wu, Z.Q., Hu, Q.H., Li,  S.X., Li, G., (1999) ''' Preliminary research on the diagnosis of chicken infectious anaemia by PCR, dot-blot-hybridization assay and indirect immunofluorescence assay'''. '''Journal of Nanjing Agricultural University'', 22(3):69-72. </ref>.
+
''' Virus isolation''' can confirm diagnosis of disease but growth of CAV in cell cultures can be difficult. Levels of infection can be estimated by the detection of raising antibody titres and many diagnostic tests have been developed that include  immunoperoxidase staining, [[ELISA testing|ELISA]], PCR and indirect [[immunofluorescence]].
    
Post mortem finding include severe atrophy of the lymphoid organs. The thymus, bursa of Fabricius, and to a lesser extent the spleen are all affected by a depletion of lymphocytes and sequential hyperplasia of reticular cells. Common finding include haemorrhages throughout the skeletal muscle and subcutaneous tissue and pale watery bone marrow. Severe aplasia of the bone marrow occurs and haematopoietic cells are replaced with adipose tissue, giving the bone marrow its watery texture and characteristic change in colour from red to yellow.
 
Post mortem finding include severe atrophy of the lymphoid organs. The thymus, bursa of Fabricius, and to a lesser extent the spleen are all affected by a depletion of lymphocytes and sequential hyperplasia of reticular cells. Common finding include haemorrhages throughout the skeletal muscle and subcutaneous tissue and pale watery bone marrow. Severe aplasia of the bone marrow occurs and haematopoietic cells are replaced with adipose tissue, giving the bone marrow its watery texture and characteristic change in colour from red to yellow.
Line 57: Line 57:     
==References==
 
==References==
<references/>
+
Schat, K.A. and van Santen, V.L. (2008) '''Chicken Infectious Anaemia'''. In: '''Diseases of Poultry, 12th Edition''' (eds. Saif, Y.M., Fadly A.M., Glissen J.R., McDougald L.R., Nolan L.K., Swayne D.E.) ''Wiley-Blackwell'', pp 211-235
 +
 
 +
Todd, D. and McNulty, M.S. (2007) '''Circoviridae'''. In: '''Poultry Diseases, 6th Edition''' (eds. Pattison, M., McMullin, P., Bradbury, J., Alexander, D.) ''Saunders, Elsevier'', pp 398-405
 +
 
 
{{CABI source
 
{{CABI source
 
|datasheet = [http://www.cabi.org/ahpc/?compid=3&dsid=89195&loadmodule=datasheet&page=2144&site=160 chicken anaemia virus] and [http://www.cabi.org/ahpc/?compid=3&dsid=89194&loadmodule=datasheet&page=2144&site=160 chicken anaemia]
 
|datasheet = [http://www.cabi.org/ahpc/?compid=3&dsid=89195&loadmodule=datasheet&page=2144&site=160 chicken anaemia virus] and [http://www.cabi.org/ahpc/?compid=3&dsid=89194&loadmodule=datasheet&page=2144&site=160 chicken anaemia]
 
|date =18 June 2011
 
|date =18 June 2011
 
}}
 
}}
<br><br><br>
+
<br><br>
 +
 
 +
This article was reviewed by Prof Dave Cavanagh BSc, PhD, DSc on 23/08/11.
 +
 
   −
{{review}}
   
[[Category:Circoviridae]]
 
[[Category:Circoviridae]]
 
[[Category:Avian Viruses]]
 
[[Category:Avian Viruses]]
 
[[Category:Lymphoreticular and Haematopoietic Diseases - Birds]]
 
[[Category:Lymphoreticular and Haematopoietic Diseases - Birds]]
 
[[Category: CABI Expert Review]]
 
[[Category: CABI Expert Review]]
 +
[[Category:Expert Review Completed]]
1,454

edits

Navigation menu