Changes

Jump to navigation Jump to search
Line 31: Line 31:  
<br />
 
<br />
 
The secretion of GnRH is pulsatile and can vary greatly throughout the day and/or year, and therefore the secretion of LH and FSH are also pulsatile (although the plasma concentration of FSH does not fluctuate as much as LH due to the effect of Inhibin, see below). The activity of GnRH neuroendocrine cells is determined by spontaneous rhythms and by sensory impulses. Cycles such as seasonal sexual activity are controlled by this pulsatile system. In male animals there are generally 4 to 12 GnRH pulses per day.
 
The secretion of GnRH is pulsatile and can vary greatly throughout the day and/or year, and therefore the secretion of LH and FSH are also pulsatile (although the plasma concentration of FSH does not fluctuate as much as LH due to the effect of Inhibin, see below). The activity of GnRH neuroendocrine cells is determined by spontaneous rhythms and by sensory impulses. Cycles such as seasonal sexual activity are controlled by this pulsatile system. In male animals there are generally 4 to 12 GnRH pulses per day.
===Regulation of Male Sex Hormones===
+
====Testosterone Regulation====
 
When LH binds to the Leydig cells, it stimulates the cellular messenger '''cAMP''' to '''activate protein kinase A'''. Protein kinase A undergoes a series of phosphorylations that in turn activate a series of enzymes that synthesis testosterone from the cholesterol base molecule. A portion of the testosterone produced in the Leydig cells diffuses into the Sertoli cells that are positioned adjacent to the Leydig cells in the testes but seperated by a basal lamina. This secreted testosterone is converted to to the female sex hormone estradiol in the Sertoli cell and as with the testosterone, a proportion diffuses into the blood, becoming part of the negative feedback system for LH.  
 
When LH binds to the Leydig cells, it stimulates the cellular messenger '''cAMP''' to '''activate protein kinase A'''. Protein kinase A undergoes a series of phosphorylations that in turn activate a series of enzymes that synthesis testosterone from the cholesterol base molecule. A portion of the testosterone produced in the Leydig cells diffuses into the Sertoli cells that are positioned adjacent to the Leydig cells in the testes but seperated by a basal lamina. This secreted testosterone is converted to to the female sex hormone estradiol in the Sertoli cell and as with the testosterone, a proportion diffuses into the blood, becoming part of the negative feedback system for LH.  
 
<br />
 
<br />
 
<br />
 
<br />
 
Testosterone inhibits the secretion of GnRH from the hypothalamus and therefore secretion of LH from the pituitary gland. if the testes are removed via castration, blood concentrations of LH and FSH will increase as there is only limited negative feedback.
 
Testosterone inhibits the secretion of GnRH from the hypothalamus and therefore secretion of LH from the pituitary gland. if the testes are removed via castration, blood concentrations of LH and FSH will increase as there is only limited negative feedback.
 +
 
===Effects of Male Sex Hormones===
 
===Effects of Male Sex Hormones===
 
Testosterone plays a crucial role in the development of male sex organs during fetal growth where increased production of testosterone causes penis growth and development of accessory sex glands during puberty. Testosterone also affects a number of other characteristics of the male, often called the "secondary sex characteristics". Testosterone is able to bind to receptors in the cytosol of cells in the same manner as other steroid hormones and these hormone-receptor complexes are then able to bind to DNA in the nucleus resulting in alterations in the level of transcription of specific genes.  
 
Testosterone plays a crucial role in the development of male sex organs during fetal growth where increased production of testosterone causes penis growth and development of accessory sex glands during puberty. Testosterone also affects a number of other characteristics of the male, often called the "secondary sex characteristics". Testosterone is able to bind to receptors in the cytosol of cells in the same manner as other steroid hormones and these hormone-receptor complexes are then able to bind to DNA in the nucleus resulting in alterations in the level of transcription of specific genes.  
6,273

edits

Navigation menu