Changes

Jump to navigation Jump to search
Line 1: Line 1:  
==Overview==
 
==Overview==
Cognitive dysfunction syndrome (CDS) is a condition that leads to an overall progressive decline in cognitive function and increase in brain pathology, with similar pathological changes seen in dogs and humans with Alzheimer's disease (AD); canine CDS is being researched as  naturally occurring mode of AD<ref name="Landsberg1">Landsberg GM, Hunthausen W, Ackerman L. The effects of aging on the behavior of senior pets. In: Handbook of behavior problems of the dog and cat. 2nd edn. Oxford; Saunders,2003: 269–304.</ref><ref>Milgram NW, Head E, Weiner E, Thomas E. Cognitive functions and aging in the dog: acquisition of non spatial visual tasks. Behav Neurosci1994; 108:57–68.</ref><ref>Cummings BJ, Head E, Afagh AJ, Milgram NW, Cotman CW. Beta-amyloid accumulation correlates with cognitive dysfunction in the aged canine. Neurobiol Learn Mem1996; 66:11–23</ref><ref>Tapp PD, Siwak CT, Gao FQ, et al. Frontal lobe volume, function, and beta-amyloid pathology in a canine model of ageing. J Neurosci2004; 24: 8205–13.</ref><ref>Borras D, Ferrer I, Pumarola M. Age related changes in the brain of the dog. Vet Pathol 1999; 36:202–11.</ref><ref>Colle M-A, Hauw J-J, Crespau F, et al. Vascular and parenchymal beta-amyloid deposition in the aging dog: correlation with behavior. Neurobiol Aging 2000; 21:695–704.</ref><ref>Salvin HE, McGreevy PD, Sachev PS, Valenzuela MJ. Underdiagnosis of canine cognitive dysfunction; a cross-sectional survey of older companion dogs. Vet J 2010; 184:277–81.</ref>. Similar pathological changes have also been observed in the cat<ref>Cummings BJ, Satou T, Head E, et al. Diffuse plaques contain C-terminal A beta 42 and not A beta 40: evidence from cats and dogs. Neurobiol Aging1996; 17:653–59</ref>. In comparative studies of the effect of selegiline, a drug licensed for the treatment of canine CDS, similar responses were seen in canine and human patients<ref>Ruehl WW, Bruyette WW, DePaoli DS, et al. Canine cognitive dysfunction as a model for human age-related cognitive decline, dementia, and Alzheimer’s disease: clinical presentation, cognitive testing, pathology and response to l-deprenyl therapy. Prog Brain Res 1995; 106:217–25.</ref><ref>Campbell S, Trettien A, Kozan B. A noncomparative open-label study evaluating the effect of selegiline hydrochloride in a clinical setting. Vet There 2001; 2:24–39.</ref>.
+
Cognitive dysfunction syndrome (CDS) is a condition that leads to an overall progressive decline in cognitive function and increase in brain pathology. Similar pathological changes are seen in dogs and humans with Alzheimer's disease (AD); canine CDS is being researched as a naturally occurring mode of AD<ref name="Landsberg1">Landsberg GM, Hunthausen W, Ackerman L. The effects of aging on the behavior of senior pets. In: Handbook of behavior problems of the dog and cat. 2nd edn. Oxford; Saunders,2003: 269–304.</ref><ref>Milgram NW, Head E, Weiner E, Thomas E. Cognitive functions and aging in the dog: acquisition of non spatial visual tasks. Behav Neurosci1994; 108:57–68.</ref><ref>Cummings BJ, Head E, Afagh AJ, Milgram NW, Cotman CW. Beta-amyloid accumulation correlates with cognitive dysfunction in the aged canine. Neurobiol Learn Mem1996; 66:11–23</ref><ref>Tapp PD, Siwak CT, Gao FQ, et al. Frontal lobe volume, function, and beta-amyloid pathology in a canine model of ageing. J Neurosci2004; 24: 8205–13.</ref><ref>Borras D, Ferrer I, Pumarola M. Age related changes in the brain of the dog. Vet Pathol 1999; 36:202–11.</ref><ref>Colle M-A, Hauw J-J, Crespau F, et al. Vascular and parenchymal beta-amyloid deposition in the aging dog: correlation with behavior. Neurobiol Aging 2000; 21:695–704.</ref><ref>Salvin HE, McGreevy PD, Sachev PS, Valenzuela MJ. Underdiagnosis of canine cognitive dysfunction; a cross-sectional survey of older companion dogs. Vet J 2010; 184:277–81.</ref>. Similar pathological changes have also been observed in the cat<ref>Cummings BJ, Satou T, Head E, et al. Diffuse plaques contain C-terminal A beta 42 and not A beta 40: evidence from cats and dogs. Neurobiol Aging1996; 17:653–59</ref>. In comparative studies of the effect of selegiline, a drug licensed for the treatment of canine CDS, similar responses were seen in canine and human patients<ref>Ruehl WW, Bruyette WW, DePaoli DS, et al. Canine cognitive dysfunction as a model for human age-related cognitive decline, dementia, and Alzheimer’s disease: clinical presentation, cognitive testing, pathology and response to l-deprenyl therapy. Prog Brain Res 1995; 106:217–25.</ref><ref>Campbell S, Trettien A, Kozan B. A noncomparative open-label study evaluating the effect of selegiline hydrochloride in a clinical setting. Vet There 2001; 2:24–39.</ref>.
Effects of feline cognitive disfunction (FCD)  include impairment of memory, learning, information processing and perception, as well as increased behavioural disinhibition; this leads to observed signs of confusion/disorientation, deranged sleep patterns, inappropriate elimination, and reduced social interaction. Previously learned behaviours, such as elimination habits, may be forgotten and affected cats show increased [[Feline Fear and Stress|fear and anxiety]]. Disinhibition can lead to an increase in irritability and [[Feline Aggression|aggressiveness]]. [[Feline Social Behaviour|Social relationships]] with both other animals and humans can also be affected. In general, cognitive dysfuncion is less frequently reported in cats than dogs.  
+
Effects of feline cognitive dysfunction (FCD)  include impairment of memory, learning, information processing and perception, as well as increased behavioural disinhibition; this leads to observed signs of confusion/disorientation, deranged sleep patterns, inappropriate elimination, and reduced social interaction. Previously learned behaviours, such as elimination habits, may be forgotten and affected cats show increased [[Feline Fear and Stress|fear and anxiety]]. Disinhibition can lead to an increase in irritability and [[Feline Aggression|aggressiveness]]. [[Feline Social Behaviour|Social relationships]] with both other animals and humans can also be affected. In general, cognitive dysfuncion is less frequently reported in cats than dogs.  
 
It is thought that FCD affects 28% of cats between the ages of eleven and fourteen, and 50% of cats over fifteen years old <ref name="Landsberg2">Landsberg, G.M., Denenberg, S., Araujo, J.A., 2010. Cognitive Dysfunction in Cats: A Syndrome we Used to Dismiss as 'Old Age'. Journal of Feline Medicine and Surgery 12: 837</ref>. Although clinical signs in cats generally seem to become evident at around ten to eleven years old, neurones in the caudate nucleus start to show functional changes by six-seven years of age<ref>Levine MS, Lloyd RL, Fisher RS, Hull CD, Buchwald NA. Sensory, motor and cognitive alterations in aged cats. Neurobiol Aging 1987; 8: 253–63</ref><ref>Levine MS, Lloyd RL, Hull CD, Fisher RS, Buchwald NA. Neurophysiological alterations in caudate neurons in aged cats. Brain Res 1987; 401:213–30</ref><ref>Harrison J, Buchwald J. Eyeblink conditioning deficits in the old cat. Neurobiol Aging 1983; 4:45–51</ref>. Diagnosis of CDS in cats is a greater challenge than in dogs, as the signs are often less apparent due to the cat's independent outdoor lifestyle.
 
It is thought that FCD affects 28% of cats between the ages of eleven and fourteen, and 50% of cats over fifteen years old <ref name="Landsberg2">Landsberg, G.M., Denenberg, S., Araujo, J.A., 2010. Cognitive Dysfunction in Cats: A Syndrome we Used to Dismiss as 'Old Age'. Journal of Feline Medicine and Surgery 12: 837</ref>. Although clinical signs in cats generally seem to become evident at around ten to eleven years old, neurones in the caudate nucleus start to show functional changes by six-seven years of age<ref>Levine MS, Lloyd RL, Fisher RS, Hull CD, Buchwald NA. Sensory, motor and cognitive alterations in aged cats. Neurobiol Aging 1987; 8: 253–63</ref><ref>Levine MS, Lloyd RL, Hull CD, Fisher RS, Buchwald NA. Neurophysiological alterations in caudate neurons in aged cats. Brain Res 1987; 401:213–30</ref><ref>Harrison J, Buchwald J. Eyeblink conditioning deficits in the old cat. Neurobiol Aging 1983; 4:45–51</ref>. Diagnosis of CDS in cats is a greater challenge than in dogs, as the signs are often less apparent due to the cat's independent outdoor lifestyle.
  

Navigation menu