Changes

Jump to navigation Jump to search
40 bytes added ,  15:20, 29 July 2010
no edit summary
Line 1: Line 1:  +
{{review}}
 +
 
[[Erythrocytes|Erythrocytes]] contain no nucleus and are thus only produced from stem cells. During the fetal stage production is in both the [[Liver - Anatomy & Physiology|liver]] and [[Spleen - Anatomy & Physiology|spleen]] however production is transferred to the [[Bone Marrow - Anatomy & Physiology|bone marrow]] ([[Bone Marrow - Anatomy & Physiology#Red marrow|red marrow]]) in the final stages of gestation. Initially erythropoiesis occurs in all bones, however after puberty production is limited to membranous bones (ribs, vertebrae, pelvic bones etc.) as in the long bones adipose tissue replaces red marrow.
 
[[Erythrocytes|Erythrocytes]] contain no nucleus and are thus only produced from stem cells. During the fetal stage production is in both the [[Liver - Anatomy & Physiology|liver]] and [[Spleen - Anatomy & Physiology|spleen]] however production is transferred to the [[Bone Marrow - Anatomy & Physiology|bone marrow]] ([[Bone Marrow - Anatomy & Physiology#Red marrow|red marrow]]) in the final stages of gestation. Initially erythropoiesis occurs in all bones, however after puberty production is limited to membranous bones (ribs, vertebrae, pelvic bones etc.) as in the long bones adipose tissue replaces red marrow.
   Line 70: Line 72:  
Erythropoietin production is directly and indirectly (via regulatory genes) increased by HIF-1 (Hypoxia inducible factor 1) which is a transcription activator that is oxygen sensitive.
 
Erythropoietin production is directly and indirectly (via regulatory genes) increased by HIF-1 (Hypoxia inducible factor 1) which is a transcription activator that is oxygen sensitive.
 
Inflammatory induced release of interleukins reduces the secretion of erythropoietin.
 
Inflammatory induced release of interleukins reduces the secretion of erythropoietin.
 +
[[Category:Haematopoiesis]]
Author, Donkey, Bureaucrats, Administrators
53,803

edits

Navigation menu