Changes

Jump to navigation Jump to search
Line 7: Line 7:  
Anticoagulant rodenticides were first discovered during ingvestigations into mouldy sweet clover poisoning in cattle<sup>1</sup>. In this condition, naturally occuring coumarin in clover is converted by fungi to a toxic agent, dicumarol, which causes a haemorrhagic syndrome when ingested. Initially, warfarin was synthesised and used in this way for rodent control, but as rodents have developed a resistance to the substance new, second generation anticoagulant rodenticides have been developed. These include coumarin (bromadiolone and brodifacoum) and indandione (pindone and diaphacinone) rodenticides, which along with warfarin may cause toxicity following accidental ingestion or malicious administration in animals.  
 
Anticoagulant rodenticides were first discovered during ingvestigations into mouldy sweet clover poisoning in cattle<sup>1</sup>. In this condition, naturally occuring coumarin in clover is converted by fungi to a toxic agent, dicumarol, which causes a haemorrhagic syndrome when ingested. Initially, warfarin was synthesised and used in this way for rodent control, but as rodents have developed a resistance to the substance new, second generation anticoagulant rodenticides have been developed. These include coumarin (bromadiolone and brodifacoum) and indandione (pindone and diaphacinone) rodenticides, which along with warfarin may cause toxicity following accidental ingestion or malicious administration in animals.  
   −
Anticoagulant rodenticide toxiticy is one of the most common causes of acquired coagulopathy in small animals. Warfarin itself has a short half-life and a fairly low toxicity in non-rodent species, so unless large or repeated doses are consumed clinical bleeding is rare. However, the second generation anticoagulant rodenticides are far more potent, with  tendency to accumulate in the liver and a long half life (4-6 days) owing to high levels of plasma protein binding<sup>2, 3</sup>. These newer drugs are therefore more commonly implicated in cases of poisoning<sup>3</sup>, and it is possible for a domestic animal to acquire secondary poisoning by ingesting a killed rodent<sup>2</sup>.
+
Anticoagulant rodenticide toxiticy is one of the most common causes of acquired coagulopathy in small animals. Warfarin itself has a short half-life and a fairly low toxicity in non-rodent species, so unless large or repeated doses are consumed clinical bleeding is rare. However, the second generation anticoagulant rodenticides are far more potent, with  tendency to accumulate in the liver and a long half life (4-6 days) owing to high levels of plasma protein binding<sup>2, 3</sup>. These newer drugs are therefore more commonly implicated in cases of poisoning<sup>3</sup>, and it is possible for a domestic animal to acquire secondary poisoning by ingesting a killed rodent<sup>2</sup>. High plasma protein binding also means that the effects of anticoagulant rodenticides are potentiated by administration of other highly plasma protein bound drugs, and low plasma albumin levels.  
    
===Mechanism of Toxicity===
 
===Mechanism of Toxicity===
6,502

edits

Navigation menu