Anticoagulant rodenticide toxiticy is one of the most common causes of acquired coagulopathy in small animals. Warfarin itself has a short half-life and a fairly low toxicity in non-rodent species, so unless large or repeated doses are consumed clinical bleeding is rare. However, the second generation anticoagulant rodenticides are far more potent, with tendency to accumulate in the liver and a long half life (4-6 days) owing to high levels of plasma protein binding<sup>2, 3</sup>. These newer drugs are therefore more commonly implicated in cases of poisoning<sup>3</sup>, and it is possible for a domestic animal to acquire secondary poisoning by ingesting a killed rodent<sup>2</sup>. High plasma protein binding also means that the effects of anticoagulant rodenticides are potentiated by administration of other highly plasma protein bound drugs, and low plasma albumin levels. | Anticoagulant rodenticide toxiticy is one of the most common causes of acquired coagulopathy in small animals. Warfarin itself has a short half-life and a fairly low toxicity in non-rodent species, so unless large or repeated doses are consumed clinical bleeding is rare. However, the second generation anticoagulant rodenticides are far more potent, with tendency to accumulate in the liver and a long half life (4-6 days) owing to high levels of plasma protein binding<sup>2, 3</sup>. These newer drugs are therefore more commonly implicated in cases of poisoning<sup>3</sup>, and it is possible for a domestic animal to acquire secondary poisoning by ingesting a killed rodent<sup>2</sup>. High plasma protein binding also means that the effects of anticoagulant rodenticides are potentiated by administration of other highly plasma protein bound drugs, and low plasma albumin levels. |