Line 36: |
Line 36: |
| ==Treatment== | | ==Treatment== |
| | | |
− | Presentation of lamb dysentery is usually peracute, with sudden deaths occuring before treatment can be implemented. Even if animals are found prior to death, treatment is usually unrewarding as organs are irreversibly damaged by toxins by the time signs present<sup>lewis</sup>. Instead, a definitive diagnosis should be pursued before great losses occur, and the farmer should be encouraged to submit the carcase for further investigations. | + | Presentation of lamb dysentery is usually peracute, with sudden deaths occuring before treatment can be implemented. Even if animals are found prior to death, treatment is usually unrewarding as organs are irreversibly damaged by toxins by the time signs present<sup>2</sup>. Instead, a definitive diagnosis should be pursued before great losses occur, and the farmer should be encouraged to submit the carcase for further investigations. |
| | | |
− | As treatment is so ineffective, much emphasis is put on to the control of lamb dysentery. Vaccination in the face of an outbreak has been shown to be effective<sup>west</sup>, and specific hyperimmune serum can also be administered<sup>Merck, watt</sup>. Oral antibiotics may be given<sup>merck</sup> but are regarded as a less appropriate therepautic. Management measures such as removing the flock from a particular pasture or reducing concentrate feeding may be implemented in other clostridial diseases but are of no benefit in lamb dysentery: over-ingestion of the dam's milk combined with poor hygiene are responsible for this disease. Therefore, | + | As treatment is so ineffective, much emphasis is put on to the control of lamb dysentery. Vaccination in the face of an outbreak has been shown to be effective<sup>7</sup>, and specific hyperimmune serum can also be administered<sup>4, 6t</sup>. Oral antibiotics may be given<sup>4</sup> but are regarded as a less appropriate therepautic. Management measures such as removing the flock from a particular pasture or reducing concentrate feeding may be implemented in other clostridial diseases but are of no benefit in lamb dysentery: over-ingestion of the dam's milk combined with poor hygiene are responsible for this disease. Therefore, |
| sufficient supervision should be given at lambing time to ensure adequate intakes of colostrium and the maintenance of good hygiene. | | sufficient supervision should be given at lambing time to ensure adequate intakes of colostrium and the maintenance of good hygiene. |
| | | |
− | Lamb dysentery can be controlled through vaccination against clostridial diseases. Before the development of modern clostridial vaccines in the 1970s, catastrophic losses of up to 30% of the lamb crop could occur due to lamb dysentery<sup>lewis</sup>. The vaccines used today have several components, making them effective against a variety of clostridial diseases and, for some vaccines, ''Pasteurella''. The vaccines consist of toxoids, which are inactivated forms of the toxins produced by clostridial organisms. The principles of vaccination are the same whether a clostridium-only or ''Pasteurella''-combined product is used: a sensitising dose must be given 4-6 weeks before a second confirming does<sup>lewis</sup>. As immunity wanes over a period of a year booster doses are required annually. Therefore, ewes should receive the primary vaccination course before entering the breeding flock and an annual booster approximated about six weeks before lambing. This timing of the booster vaccination affords passive protection to lambs until around sixteen weeks of age. Lambs born to unvaccinated ewes should themselves be vaccinated at between 3 and 12 weeks old, with a second injection given at least four weeks later. | + | Lamb dysentery can be controlled through vaccination against clostridial diseases. Before the development of modern clostridial vaccines in the 1970s, catastrophic losses of up to 30% of the lamb crop could occur due to lamb dysentery<sup>2</sup>. The vaccines used today have several components, making them effective against a variety of clostridial diseases and, for some vaccines, ''Pasteurella''. The vaccines consist of toxoids, which are inactivated forms of the toxins produced by clostridial organisms. The principles of vaccination are the same whether a clostridium-only or ''Pasteurella''-combined product is used: a sensitising dose must be given 4-6 weeks before a second confirming dose<sup>2</sup>. As immunity wanes over a period of a year booster doses are required annually. Therefore, ewes should receive the primary vaccination course before entering the breeding flock and an annual booster approximated about six weeks before lambing. This timing of the booster vaccination affords passive protection to lambs until around sixteen weeks of age. Lambs born to unvaccinated ewes should themselves be vaccinated at between 3 and 12 weeks old, with a second injection given at least four weeks later. |
| | | |
| ==Links== | | ==Links== |