EPO is transported from kidneys to [[Bone Marrow - Anatomy & Physiology|bone marrow]] where it acts upon receptors on the CFU-E’s and causes differentiation into erythrocyte precursors. It also increases the rate of division and maturation of the developing erythrocyte precursors by increasing gene transcription. Thus it is not the number of [[Erythrocytes|erythrocytes]] but the oxygen concentration that regulates its release. EPO release can be affected by any form of renal pathology. | EPO is transported from kidneys to [[Bone Marrow - Anatomy & Physiology|bone marrow]] where it acts upon receptors on the CFU-E’s and causes differentiation into erythrocyte precursors. It also increases the rate of division and maturation of the developing erythrocyte precursors by increasing gene transcription. Thus it is not the number of [[Erythrocytes|erythrocytes]] but the oxygen concentration that regulates its release. EPO release can be affected by any form of renal pathology. |