Difference between revisions of "Gastric Ulceration - Horse"

From WikiVet English
Jump to navigation Jump to search
 
(239 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{unfinished}}
+
{{OpenPagesTop}}
 +
Also known as: '''''Gastroduodenal ulceration — Gastrointestinal ulceration — Equine Gastric Ulcer Syndrome — EGUS — Peptic ulcer disease — Equine Gastric Ulcer
  
{| cellpadding="10" cellspacing="0" border="1"  
+
==Introduction==
| Also known as:
+
The term ''''Equine gastric ulcer syndrome (EGUS)'''' encompasses a number of disease complexes<ref name="Merritt">Merritt, A M (2009) Appeal for proper usage of the term ʻEGUSʼ: Equine gastric
|'''Gastroduodenal ulceration<br>
+
ulcer syndrome.  ''Equine Vet J'', 41(7):616.</ref> associated with ulceration of the oesophageal, gastric or duodenal mucosa<ref name="EGUC">The Equine Gastric Ulcer Council (1999) Tutorial Article: Recommendations for the diagnosis and treatment of equine gastric ulcer syndrome (EGUS).  ''Equine Vet Educ'', 11(5):262-272.</ref> in horses.  When such damage is caused by acidic gastric juice, the defect is described as a ''''peptic ulcer''''.<ref name="EGUC">The Equine Gastric Ulcer Council (1999) Tutorial Article: Recommendations for the diagnosis and treatment of equine gastric ulcer syndrome (EGUS).  ''Equine Vet Educ'', 11(5):262-272.</ref>  The non-glandular (squamous, proximal or orad) region of the equine stomach is lined by stratified squamous mucosa and a glandular mucosa lines the distal (aborad) portion.  Ulceration of either, or both<ref>Andrews, F.M, Bernard, W.V, Byars, T.D ''et al.'' (1999) Recommendations for the diagnosis and treatment of equine gastric ulcer syndrome (EGUS).  ''Equine Vet Educ'', 1:122-134.  In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref> regions of the gastric mucosa is one of the most important problems of the equine stomach as it may limit performance<ref name="Bell">Bell, R.J, Mogg, T, Kingston, J.K (2007) Equine gastric ulcer syndrome in adult horses: a review.  ''N Z Vet J'', 55(1):1-12).</ref> and compromise welfare.<ref name="Martineau">Martineau, H, Thompson, H, Taylor, D (2009) Pathology of gastritis and gastric ulceration in the horse.  Part 1: Range of lesions present in 21 mature individuals.  ''Equine Vet J'', 41(7):638-644.</ref> The two regions meet abruptly at the '''''margo plicatus'''''<ref name="Sanchez">Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>, adjacent to where most ulcers occur.<ref name="EGUC">The Equine Gastric Ulcer Council (1999) Tutorial Article: Recommendations for the diagnosis and treatment of equine gastric ulcer syndrome (EGUS).  ''Equine Vet Educ'', 11(5):262-272.</ref> Damage to these regions occurs via differing pathophysiological routes and varies in severity.  Inflammation can progress to cellular death and sloughing causing disruption of the superficial mucosa ('''erosion'''), then penetration of the submucosa down to the level of the ''lamina propria''<ref name="EGUC">The Equine Gastric Ulcer Council (1999) Tutorial Article: Recommendations for the diagnosis and treatment of equine gastric ulcer syndrome (EGUS).  ''Equine Vet Educ'', 11(5):262-272.</ref>('''ulceration'''),  full thickness ulceration ('''perforation''')<ref name="Sanchez">Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref> and potentially duodenal stricture.<ref name="Merck">Merck & Co (2008) The Merck Veterinary Manual (Eighth Edition), Merial</ref> The occult nature of the disease typically precludes the observation of clinical signs until severe ulceration has developed.<ref name="EGUC">The Equine Gastric Ulcer Council (1999) Tutorial Article: Recommendations for the diagnosis and treatment of equine gastric ulcer syndrome (EGUS).  ''Equine Vet Educ'', 11(5):262-272.</ref>
'''Gastrointestinal ulceration<br>
 
'''Equine Gastric Ulcer Syndrome<br>
 
'''Peptic ulcer disease<br>
 
'''Equine Gastric Ulcer'''
 
|}
 
  
{| cellpadding="10" cellspacing="0" border="1"
+
See also:'''[[Gastric Ulceration - all species]] — [[Colic, Gastric Causes]]'''
| See also:
 
|'''[[Gastric Ulceration - all species]]'''
 
|}
 
 
 
 
 
==Description==
 
The term ''''Equine gastric ulcer syndrome (EGUS)'''' is used to describe the disease complex associated with ulceration of the oesophageal, gastric or duodenal mucosa<ref name="EGUC">The Equine Gastric Ulcer Council (1999) Tutorial Article: Recommendations for the diagnosis and treatment of equine gastric ulcer syndrome (EGUS).  ''Equine Vet Educ'', 11(5):262-272.</ref> in horses.  When such damage is caused by acidic gastric juice, the defect is described as a ''''peptic ulcer''''.<ref name="EGUC">The Equine Gastric Ulcer Council (1999) Tutorial Article: Recommendations for the diagnosis and treatment of equine gastric ulcer syndrome (EGUS).  ''Equine Vet Educ'', 11(5):262-272.</ref>  Ulceration of either or both<ref>Andrews, F.M, Bernard, W.V, Byars, T.D ''et al.'' (1999) Recommendations for the diagnosis and treatment of equine gastric ulcer syndrome (EGUS).  ''Equine Vet Educ'', 1:122-134.  In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref> regions of the gastric mucosa is one of the most important conditions of the equine stomach as it may limit performance<ref name="Bell">Bell, R.J, Mogg, T, Kingston, J.K (2007) Equine gastric ulcer syndrome in adult horses: a review.  ''N Z Vet J'', 55(1):1-12).</ref> and compromise welfare.<ref name="Martineau">Martineau, H, Thompson, H, Taylor, D (2009) Pathology of gastritis and gastric ulceration in the horse.  Part 1: Range of lesions present in 21 mature individuals.  ''Equine Vet J'', 41(7):638-644.</ref>  The non-glandular (proximal or orad) region of the equine stomach is lined by stratified squamous mucosa and a glandular mucosa lines the distal (aborad) portion.  The two regions meet abruptly at the '''''margo plicatus'''''<ref name="Sanchez">Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>, adjacent to where most ulcers occur.<ref name="EGUC">The Equine Gastric Ulcer Council (1999) Tutorial Article: Recommendations for the diagnosis and treatment of equine gastric ulcer syndrome (EGUS).  ''Equine Vet Educ'', 11(5):262-272.</ref>  Damage to these regions occurs via differing pathophysiological routes and varies in severity from inflammation, to cellular death and sloughing causing disruption of the superficial mucosa ('''erosion'''), penetration of the submucosa down to the level of the ''lamina propria''<ref name="EGUC">The Equine Gastric Ulcer Council (1999) Tutorial Article: Recommendations for the diagnosis and treatment of equine gastric ulcer syndrome (EGUS).  ''Equine Vet Educ'', 11(5):262-272.</ref>('''ulceration'''),  full thickness ulceration ('''perforation''')<ref name="Sanchez">Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref> and potentially duodenal stricture.<ref name="Merck">Merck & Co (2008) The Merck Veterinary Manual (Eighth Edition), Merial</ref> The occult nature of the disease typically precludes the observation of clinical signs until severe ulceration has developed.<ref name="EGUC">The Equine Gastric Ulcer Council (1999) Tutorial Article: Recommendations for the diagnosis and treatment of equine gastric ulcer syndrome (EGUS).  ''Equine Vet Educ'', 11(5):262-272.</ref>
 
  
 
==Prevalence==
 
==Prevalence==
 
The prevalence of equine gastric ulceration has increased over the last century.<ref name="Sandin">Sandin, A, Skidell, J, Haggstrom, J, Nilsson, G (2000) ''Postmortem'' findings of gastric ulcers in Swedish horses older than age one year: a retrospective study of 3715 horses (1924–1996).  ''Equine Vet J'', 32(1):36-42.</ref> In a retrospective study of 3715 Swedish horses, ulcers were most often found in the squamous mucosa along the ''margo plicatus'', then the glandular body, proximal squamous mucosa and antrum.<ref name="Sandin">Sandin, A, Skidell, J, Haggstrom, J, Nilsson, G (2000) ''Postmortem'' findings of gastric ulcers in Swedish horses older than age one year: a retrospective study of 3715 horses (1924–1996).  ''Equine Vet J'', 32(1):36-42.</ref>  For the squamous region, reported prevalences are:
 
The prevalence of equine gastric ulceration has increased over the last century.<ref name="Sandin">Sandin, A, Skidell, J, Haggstrom, J, Nilsson, G (2000) ''Postmortem'' findings of gastric ulcers in Swedish horses older than age one year: a retrospective study of 3715 horses (1924–1996).  ''Equine Vet J'', 32(1):36-42.</ref> In a retrospective study of 3715 Swedish horses, ulcers were most often found in the squamous mucosa along the ''margo plicatus'', then the glandular body, proximal squamous mucosa and antrum.<ref name="Sandin">Sandin, A, Skidell, J, Haggstrom, J, Nilsson, G (2000) ''Postmortem'' findings of gastric ulcers in Swedish horses older than age one year: a retrospective study of 3715 horses (1924–1996).  ''Equine Vet J'', 32(1):36-42.</ref>  For the squamous region, reported prevalences are:
  
*Racehorses 70-100%<ref name="Hammond">Hammond, C.J, Mason, D.K, Watkins, K.L (1986) Gastric ulceration in mature Thoroughbred horses.  ''Equine Vet J'', 18(4):284-287.</ref><ref>Vatistas, N.J, Snyder, J.R, Carlson, G, ''et al'' (1994) Epidemiological study of gastric ulceration in the thoroughbred racehorse:202 horses 1992-1993.  ''Proc Am Assoc Equine Pract'', 40:125-126</ref><ref>Murray, M.J, Schusser, G.F, Pipers, F.S, Gross, S.J (1996) Factors associated with gastric lesions in thoroughbred racehorses.  ''Equine Vet J'', 28:368-374.</ref>  
+
*Racehorses 66-93%<ref name="Hammond">Hammond, C.J, Mason, D.K, Watkins, K.L (1986) Gastric ulceration in mature Thoroughbred horses.  ''Equine Vet J'', 18(4):284-287.</ref><ref>Vatistas, N.J, Snyder, J.R, Carlson, G, ''et al'' (1994) Epidemiological study of gastric ulceration in the thoroughbred racehorse:202 horses 1992-1993.  ''Proc Am Assoc Equine Pract'', 40:125-126</ref><ref>Murray, M.J, Schusser, G.F, Pipers, F.S, Gross, S.J (1996) Factors associated with gastric lesions in thoroughbred racehorses.  ''Equine Vet J'', 28:368-374.</ref>  
*Racehorses in active race training 80-90% (incidence 100%)<ref name="Vatistas 2">Vatistas, N.J, Sifferman, R.L, Holste, J, Cox, J.L, Pinalto, G, Schultz, K.T (1999) Induction and maintenance of gastric ulceration in horses in simulated race training.  ''Equine Vet J Suppl'', 29:40-44</ref><ref>Vatistas, N.J, Snyder, J.R, Carlson, G, Johnson, B, Arthruy, R.M, Thurmond, M, Zhou, H, Lloyd, K.L.K (1999) Cross-sectional study of gastric ulcers of the squamous mucosa in Thoroughbred racehorses.  ''Equine Vet J'', Suppl 29:34-39.</ref>
+
*Racehorses in active race training 80-93% (incidence 100%)<ref name="Vatistas 2">Vatistas, N.J, Sifferman, R.L, Holste, J, Cox, J.L, Pinalto, G, Schultz, K.T (1999) Induction and maintenance of gastric ulceration in horses in simulated race training.  ''Equine Vet J Suppl'', 29:40-44</ref><ref>Vatistas, N.J, Snyder, J.R, Carlson, G, Johnson, B, Arthruy, R.M, Thurmond, M, Zhou, H, Lloyd, K.L.K (1999) Cross-sectional study of gastric ulcers of the squamous mucosa in Thoroughbred racehorses.  ''Equine Vet J'', Suppl 29:34-39.</ref>
 
*Show horses 58%<ref>McClure, S.R, Glickman, L.T, Glickman, N.W (1999) Prevalence of gastric ulcers in show horses.  ''J Am Vet Med Assoc'', 215:1130-1133.</ref>
 
*Show horses 58%<ref>McClure, S.R, Glickman, L.T, Glickman, N.W (1999) Prevalence of gastric ulcers in show horses.  ''J Am Vet Med Assoc'', 215:1130-1133.</ref>
 
*Ponies 78%<ref>MacAllister, C.G, Sangiah, S, Mauromoustakos, A (1992) Effect of a histamine H, type receptor antagonist (WY 45, 727) on the healing of gastric ulcers in ponies.  ''J Vet Int Med'', 6:271-275.</ref>
 
*Ponies 78%<ref>MacAllister, C.G, Sangiah, S, Mauromoustakos, A (1992) Effect of a histamine H, type receptor antagonist (WY 45, 727) on the healing of gastric ulcers in ponies.  ''J Vet Int Med'', 6:271-275.</ref>
*Endurance 67%<ref>Nieto, J.E, Snyder, J.R, Beldomenico, P ''et al.'' (2004) Prevalence of gastric ulcers in endurance horses: a preliminary report.  ''Vet J'', 167:33-37.</ref>
+
*Endurance horses 67%<ref>Nieto, J.E, Snyder, J.R, Beldomenico, P ''et al.'' (2004) Prevalence of gastric ulcers in endurance horses: a preliminary report.  ''Vet J'', 167:33-37.</ref>
 
*Western performance horses 40%<ref>Bertone, J (2000) Prevalence of gastric ulcers in elite, heavy use western performance horses.  ''Proc Am Assoc Equine Pract'', 46:256-259.</ref>
 
*Western performance horses 40%<ref>Bertone, J (2000) Prevalence of gastric ulcers in elite, heavy use western performance horses.  ''Proc Am Assoc Equine Pract'', 46:256-259.</ref>
 
*Thoroughbred broodmares (67-77%)<ref>LeJeune, S.S, Nieto, J.E, Dechant, J.E, Snyder, J.R (2009) Prevalence of gastric ulcers in Thoroughbred broodmares in pasture: a preliminary report.  ''Vet J'', 181(3):251-5.</ref>
 
*Thoroughbred broodmares (67-77%)<ref>LeJeune, S.S, Nieto, J.E, Dechant, J.E, Snyder, J.R (2009) Prevalence of gastric ulcers in Thoroughbred broodmares in pasture: a preliminary report.  ''Vet J'', 181(3):251-5.</ref>
 
*Nonracing performance horses (17% pre-competition, 56% post-competition)<ref>Hartmann, A.M, Frankeny, R.L (2003) A preliminary investigation into the association between competition and gastric ulcer formation in non-racing performance horses.  ''J Equine Vet Sci'', 23:560-561.  In:Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>
 
*Nonracing performance horses (17% pre-competition, 56% post-competition)<ref>Hartmann, A.M, Frankeny, R.L (2003) A preliminary investigation into the association between competition and gastric ulcer formation in non-racing performance horses.  ''J Equine Vet Sci'', 23:560-561.  In:Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>
 
*Pleasure horses in full work ~ 60%<ref name="Bell">Bell, R.J, Mogg, T, Kingston, J.K (2007) Equine gastric ulcer syndrome in adult horses: a review.  ''N Z Vet J'', 55(1):1-12).</ref>   
 
*Pleasure horses in full work ~ 60%<ref name="Bell">Bell, R.J, Mogg, T, Kingston, J.K (2007) Equine gastric ulcer syndrome in adult horses: a review.  ''N Z Vet J'', 55(1):1-12).</ref>   
*Pleasure, riding lessons, showing 37%<ref name="Murray 1989">Murray, M.J, Grodinsky, C, Anderson, C.W, Radue, P.F, Schmidt, G.R (1989) Gastric ulcers in horses: a comparison of endoscopic findings in horses with and without clinical signs.  ''Equine Vet J Suppl'', 7:68-72.</ref>
+
*Foals ~25-57%<ref>Wilson, J.H (1986) Gastric and duodenal ulcers in foals: a retrospective study.  ''Proc Equine Colic Res Symp 2nd:126-128.</ref><ref>Murray, M.J, Grodinsky, C, Cowles, R.R, ''et al.''(1990) Endoscopic evaluation of changes in gastric lesions of Thoroughbred foals.  ''J Am Vet Med Assoc'', 196:1623-1627.</ref><ref>Murray, M.J (1989) Endoscopic appearance of gastric lesions in foals: 94 cases (1987-1988).  ''J Am Vet Med Assoc'', 195:1135-1141.</ref>
*Foals ~25-57%<ref>Wilson, J.H (1986) Gastric and duodenal ulcers in foals: a retrospective study.  ''Proc Equine Colic Res Symp 2nd:126-128.</ref><ref>Murray, M.J, Grodinsky, C, Cowles, R.R, ''et al.''(1990) Endoscopic evaluation of changes in gastric lesions of Thoroughbred foals.  ''J Am Vet Med Assoc'', 196:1623-1627.</ref><ref>Murray, M.J (1989) Endoscopic appearance of gastric lesions in foals: 94 cases (1987-1988).  ''J Am Vet Med Assoc'', 195:1135-1141.</ref>, the incidence increases dramatically in foals with clinical signs, especially gastrointestinal signs.<ref name="EGUC">The Equine Gastric Ulcer Council (1999) Tutorial Article: Recommendations for the diagnosis and treatment of equine gastric ulcer syndrome (EGUS).  ''Equine Vet Educ'', 11(5):262-272.</ref>
 
  
The prevalence and severity of ulcers increases with work intensity<ref name="Merck">Merck & Co (2008) The Merck Veterinary Manual (Eighth Edition), Merial</ref> and duration<ref>Orsini, J.A, Pipers, F.S (1997) Endoscopic evaluation of the relationship between training, racing, and gastric ulcers.  ''Vet Surg'', 26:424.  In: Orsini, J (2000) ''Tutorial Article'' Gastric ulceration in the mature horse: a review.  ''Equine Vet Educ'', 12(1):24-27.</ref><ref>Murray, M.J (1994) Gastric ulcers in adult horses.  ''Comp Cont Educ Pract Vet'', 16:792-794.  In:Orsini, J (2000) ''Tutorial Article'' Gastric ulceration in the mature horse: a review.  ''Equine Vet Educ'', 12(1):24-27.</ref>,  thus racehorses in active training are more often affected<ref name="Hammond">Hammond, C.J, Mason, D.K, Watkins, K.L (1986) Gastric ulceration in mature Thoroughbred horses.  ''Equine Vet J'', 18(4):284-287.</ref> and in half of these,  the lesions are moderate to severe.<ref name="Merck">Merck & Co (2008) The Merck Veterinary Manual (Eighth Edition), Merial</ref>  In one study, all horses developed gastric ulcers within 2 weeks of entering simulated race training.<ref name="Vatistas 2">Vatistas, N.J, Sifferman, R.L, Holste, J, Cox, J.L, Pinalto, G, Schultz, K.T (1999) Induction and maintenance of gastric ulceration in horses in simulated race training.  ''Equine Vet J Suppl'', 29:40-44</ref>  Lesions are thought to be chronically progressive during race training, but to regress during retirement.<ref name="Hammond">Hammond, C.J, Mason, D.K, Watkins, K.L (1986) Gastric ulceration in mature Thoroughbred horses.  ''Equine Vet J'', 18(4):284-287.</ref>  Horses with signs of gastrointestinal distress also demonstrate an increased frequency and severity of ulcerative lesions.<ref name="EGUC">The Equine Gastric Ulcer Council (1999) Tutorial Article: Recommendations for the diagnosis and treatment of equine gastric ulcer syndrome (EGUS).  ''Equine Vet Educ'', 11(5):262-272.</ref>EGUS prevalence is high in horses with bowel, liver and oesophageal lesions.<ref name="Sandin">Sandin, A, Skidell, J, Haggstrom, J, Nilsson, G (2000) ''Postmortem'' findings of gastric ulcers in Swedish horses older than age one year: a retrospective study of 3715 horses (1924–1996).  ''Equine Vet J'', 32(1):36-42.</ref>  Among show horses, 82% of those with signs of abdominal discomfort had gastric ulcers<ref>Murray, M. (1992) Gastric ulceration in horses: 91 cases (1987-1990).  ''J Am Vet Med Assoc'', 201:117-120.  In: Martineau, H, Thompson, H, Taylor, D (2009) Pathology of gastritis and gastric ulceration in the horse.  Part 1: Range of lesions present in 21 mature individuals.  ''Equine Vet J'', 41(7):638-644.</ref>  Around 30% of adult horses and about 50% of foals have mild gastric erosions which heal without treatment or clinical signs.<ref name="Merck">Merck & Co (2008) The Merck Veterinary Manual (Eighth Edition), Merial</ref>  In 201 clinically normal horses in Denmark, 53% had EGUS with severity score >2 and older horses were more likely to have lesions in both regions of the stomach<ref>Luthersson, N, Nielsen, K.H, Harris, P, Parkin, T.D (2009) The prevalence and anatomical distribution of equine gastric ulcer syndrome (EGUS) in 201 horses in Denmark.  ''Equine Vet J'', 41(7):619-24.</ref>
+
The prevalence and severity of ulcers increases with work intensity<ref name="Merck">Merck & Co (2008) The Merck Veterinary Manual (Eighth Edition), Merial</ref> and duration<ref>Orsini, J.A, Pipers, F.S (1997) Endoscopic evaluation of the relationship between training, racing, and gastric ulcers.  ''Vet Surg'', 26:424.  In: Orsini, J (2000) ''Tutorial Article'' Gastric ulceration in the mature horse: a review.  ''Equine Vet Educ'', 12(1):24-27.</ref><ref>Murray, M.J (1994) Gastric ulcers in adult horses.  ''Comp Cont Educ Pract Vet'', 16:792-794.  In:Orsini, J (2000) ''Tutorial Article'' Gastric ulceration in the mature horse: a review.  ''Equine Vet Educ'', 12(1):24-27.</ref>,  thus racehorses in active training are more often affected<ref name="Hammond">Hammond, C.J, Mason, D.K, Watkins, K.L (1986) Gastric ulceration in mature Thoroughbred horses.  ''Equine Vet J'', 18(4):284-287.</ref> and in half of these,  the lesions are moderate to severe.<ref name="Merck">Merck & Co (2008) The Merck Veterinary Manual (Eighth Edition), Merial</ref>  In one study, all horses developed gastric ulcers within 2 weeks of entering simulated race training.<ref name="Vatistas 2">Vatistas, N.J, Sifferman, R.L, Holste, J, Cox, J.L, Pinalto, G, Schultz, K.T (1999) Induction and maintenance of gastric ulceration in horses in simulated race training.  ''Equine Vet J Suppl'', 29:40-44</ref>  Lesions are thought to be chronically progressive during race training, but to regress during retirement.<ref name="Hammond">Hammond, C.J, Mason, D.K, Watkins, K.L (1986) Gastric ulceration in mature Thoroughbred horses.  ''Equine Vet J'', 18(4):284-287.</ref>  Horses with signs of gastrointestinal distress also demonstrate an increased frequency and severity of ulcerative lesions.<ref name="EGUC">The Equine Gastric Ulcer Council (1999) Tutorial Article: Recommendations for the diagnosis and treatment of equine gastric ulcer syndrome (EGUS).  ''Equine Vet Educ'', 11(5):262-272.</ref>EGUS prevalence is high in horses with bowel, liver and oesophageal lesions<ref name="Sandin">Sandin, A, Skidell, J, Haggstrom, J, Nilsson, G (2000) ''Postmortem'' findings of gastric ulcers in Swedish horses older than age one year: a retrospective study of 3715 horses (1924–1996).  ''Equine Vet J'', 32(1):36-42.</ref> and in foals, the incidence increases dramatically in those with gastrointestinal signs.<ref name="EGUC">The Equine Gastric Ulcer Council (1999) Tutorial Article: Recommendations for the diagnosis and treatment of equine gastric ulcer syndrome (EGUS).  ''Equine Vet Educ'', 11(5):262-272.</ref>  Among show horses, 82% of those with signs of abdominal discomfort had gastric ulcers<ref>Murray, M. (1992) Gastric ulceration in horses: 91 cases (1987-1990).  ''J Am Vet Med Assoc'', 201:117-120.  In: Martineau, H, Thompson, H, Taylor, D (2009) Pathology of gastritis and gastric ulceration in the horse.  Part 1: Range of lesions present in 21 mature individuals.  ''Equine Vet J'', 41(7):638-644.</ref>  but around 30% of adult horses and many foals have mild gastric erosions which heal without treatment or clinical signs.<ref name="Merck">Merck & Co (2008) The Merck Veterinary Manual (Eighth Edition), Merial</ref>  In 201 clinically normal horses in Denmark, 53% had EGUS with severity score >2 and older horses were more likely to have lesions in both regions of the stomach<ref>Luthersson, N, Nielsen, K.H, Harris, P, Parkin, T.D (2009) The prevalence and anatomical distribution of equine gastric ulcer syndrome (EGUS) in 201 horses in Denmark.  ''Equine Vet J'', 41(7):619-24.</ref>
  
 
==Signalment==
 
==Signalment==
Line 40: Line 28:
  
 
==Pathophysiology==
 
==Pathophysiology==
NOT associated with ''Helicobacter pylori'' and not typically associated with ''Gasterophilus''
+
====Anatomy====
Differences in the multivariable models produced for all ulcers and nonglandular ulcers support differences in the aetiology of ulcers in different locations of the stomach.
+
[[File:Margo Plicatus.jpg|400px|thumb|right|]]
(Luthersson et al 2009)
+
In the horse, the '''squamous mucosa''' covers the lining of the oesophagus and about one third of the gastric wall.  It provides a protective barrier comprising a tightly bound superifcial layer of cornified cells.<ref name="EGUC">The Equine Gastric Ulcer Council (1999) Tutorial Article: Recommendations for the diagnosis and treatment of equine gastric ulcer syndrome (EGUS).  ''Equine Vet Educ'', 11(5):262-272.</ref>  This squamous epithelium has no absorptive or secretory function.  The '''glandular''' region of the stomach contains mucus-secreting cells and gastric glands.  The '''''margo plicatus''''' is analagous to the gastro-oesophageal junction in man, however it lacks the lower oesophageal sphincter that helps to prevent acidic injury of the squamous mucosa.<ref name="Sanchez">Sanchez, L.C (2010) 'Diseases Of The Stomach' in Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>  The predilection sites for lesions in various groups are:
 +
*'''Neonatal foals''': glandular mucosa
 +
*'''Healthy suckling foals younger than 50 days''': squamous mucosa adjacent to ''margo plicatus'' along the greater curvature, squamous epithelial desquamation
 +
*'''Suckling foals older than 50 days with clinical signs''': squamous mucosa along lesser curvature, squamous mucosa of fundus and adjacent to ''margo plicatus''.
 +
*'''Sucklings and early weanlings''': gastroduodenal ulcer disease (GDUD) – lesions in proximal duodenum, also severe lesions in squamous or glandular region
 +
*'''Yearlings and adults''': squamous epithelium, particularly adjacent to ''margo plicatus'', glandular and antral involvement becoming more common,<ref>Bell, R.J.W, Kingston, J.K, Mogg, T.D, Perkins, N.R (2007) The prevalence of gastric ulceration in racehorses in New Zealand.  ''N Z Vet J'', 55:13-18.  In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref><ref>Murray, M.J, Nout, Y.S, Ward, D.L (2001) Endoscopic findings of the gastric antrum and pylorus in horses: 162 cases (1996-2000).  ''J Vet Intern Med'', 15:401-406.  In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref> severe cases of ulceration can extend dorsally into squamous fundus.<ref name="Sanchez">Sanchez, L.C (2010) 'Diseases Of The Stomach' in Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>
 +
 
 +
 +
 
 +
====Intrinsic protective factors====
 +
=====Glandular mucosal defence mechanisms<ref name="EGUC">The Equine Gastric Ulcer Council (1999) Tutorial Article: Recommendations for the diagnosis and treatment of equine gastric ulcer syndrome (EGUS).  ''Equine Vet Educ'', 11(5):262-272.</ref>=====
 +
*'''Mucus:''' secreted by specialised mucous neck cells.  This viscous, hydrophobic glycoproteinaceous gel adheres to the mucosa and resists acid and pepsin contact. Also acts as a lubricant to minimise mechanical damage.
 +
*'''Bicarbonate:''' secreted by gastric mucosal cells.  Secretion triggered by luminal acid concentrations, mechanical irritation, and release of endogenous prostaglandins. Bicarbonate trapped in the mucous layer creates a pH gradient from physiological pH at the mucosal surface to a gastric acid pH at the luminal interface.
 +
*'''Epidermal growth factors:''' found in salivary gland secretions, promote DNA synthesis and proliferation of gastric mucosal cells. Also important in prostaglandin synthesis and inhibit hydrochloric acid (HCl) secretion by the parietal glands.
 +
*'''Epithelial restitution mechanisms:''' important for gastric mucosal integrity. Epithelial injury induces migration of adjacent cells to replace damaged cells within minutes without the need of new cell proliferation.  Shear forces, induced by mixing of ingesta, are counterbalanced by epithelial restoration.
 +
*'''Adequate mucosal blood supply:''' required to provide the mucosa with oxygen and nutrients to produce the mucus-bicarbonate layer and to support rapid turnover of epithelial cells.  Also required to remove acid that has diffused into the mucosa.  Compromised mucosal perfusion may be important in the stress-related ulceration of neonates.<ref name="Sanchez">Sanchez, L.C (2010) 'Diseases Of The Stomach' in Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>
 +
*'''Prostaglandins:''' inhibit acid secretion, promote mucosal perfusion (through vasodilation), increase mucus and bicarbonate secretions and support mucosal cell repair.  PGE2 is especially important in these functions.
 +
 
 +
=====Squamous mucosal defence mechanisms<ref name="EGUC">The Equine Gastric Ulcer Council (1999) Tutorial Article: Recommendations for the diagnosis and treatment of equine gastric ulcer syndrome (EGUS).  ''Equine Vet Educ'', 11(5):262-272.</ref>=====
 +
The squamous mucosa has comparatively few defence mechansims:
 +
*'''Intercellular tight junctions''' and '''intracellular buffering systems''' act as barriers
 +
*'''Epidermal growth factor''' also contributes to the maintenance and repair of gastric squamous epithelium.<ref>Jeffrery, S.C, Murray, M.J, Eichorn, E.S (2001) Distribution of epidermal growth factor receptor (EGFr) in normal and acute peptic-injured equine gastric squaous epithelium.  ''Equine Vet J'', 33:562-569.  In: Martineau, H, Thompson, H, Taylor, D (2009) Pathology of gastritis and gastric ulceration in the horse.  Part 1: range of lesions present in 21 mature individuals.  ''Equine Vet J'', 41(7):638-644.</ref>
 +
 
 +
=====Other intrinsic defence mechanisms=====
 +
*'''Gastrodudodenal motility''': critically ill neonatal foals can have a substantially different pH profile compared to clinically normal foals, possibly due to changes in gastric motility and acid secretion.<ref>Sanchez, L.C, Lester, G.D, Merritt, A.M (2001) Intragastric pH in critically ill neonatal foals and the effect of ranitidine.  ''J Am Vet Med Assoc'', 218:907-911.  In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>
 +
 
 +
====Intrinsic ulcerogenic factors<ref name="Nadeau">Nadeau, J.A, Andrews, F.M (2009) ''Science: Overviews'' Equine gastric ulcer syndrome: The continuing conundrum.  ''Equine Vet J'', 41(7):611-615.</ref>====
 +
The most significant factors promoting gastric ulceration are HCl and a gastric pH persistently less than 4.0.  Volatile fatty acids (VFAs), lactic acid and bile acids augment the changes in squamous mucosal bioelectrical properties induced by HCl (the first sign of acidic damage).  VFAs and lactic acid are by-products of the bacterial fermentation of sugars found in concentrate diets.
 +
*'''Hydrochloric acid''' compromises the outer cell barrier of the squamous epithelium.  It then diffuses into the cells of the ''stratum spinosum'', inhibiting cellular sodium transport and causing cell swelling, necrosis and eventual ulceration.<ref>Nadeau, J.A, Andrews, F.M, Patton, C.S, Argenzio, R.A, Mathew, A.G, Saxton, A.M (2003) Effects of hydrochloric, acetic, butyric, and proprionic acids on pathogenesis of ulcers in the nonglandular portion of the stomach of horses. ''Am J Vet Res'',64:404-412.</ref><ref>Nadeau, J.A, Andrews, F.M, Patton, C.S, Argenzio, R.A, Mathew, A.G, Saxton, A.M (2003) Effects of hydrochloric, valeric, and other volatile fatty acids on pathogenesis of ulcers in the nonglandular portion of the stomach of horses.  ''Am J Vet Res'', 64:413-417.</ref>
 +
 
 +
*'''VFAs''': acetic, propionic, butyric and valeric acids are lipid soluble, which enables them to readily diffuse into the ''stratum spinosum'' and immediately cause the damage as described above.
  
==Risk Factors==
+
*'''Lactic acid''': has been shown to increase the permeability of the squamous mucosa.<ref>Andrews, F.M, Buchanan, B.R, Elliott, S.B, Al Jassim, R.A.M, McGowan, C.M, Saxton, A.M (2008) ''In vitro'' effects of hydrochloric and lactic acids on bioelectric properties of equine gastric squamous mucosa. ''Equine Vet J'', 40:301-305.</ref>
===Exercise===
 
The aims of this study were to determine whether ulcers could be induced and maintained in a population of horses fed a concentrate diet, maintained in fast work and fasted before exercise. In this study ulcers developed without the administration of nonsteroidal anti-inflammatory agents or withholding of feed.(Vatistas 2 1999)
 
The mechanism for this is that compression of the stomach by abdominal viscera and diaphragm leads to delivery of acid contents into the proximal region of the stomach (Lorenzo-Figueras and Merritt 2002). This mechanism is thought to deliver the acid to the nonglandular mucosa resulting in acid exposure and injury.Other risk factors have surfaced in a variety of recent studies. In one study of horses in Australia, horses trained in urban areas are 3.9x more likely to have gastric ulcers. Also, time in work, crib-biting, difficulty maintaining bodyweight and playing the radio in the barn were identified as other risk factors (Lester et al. 2007). On the other hand, protective factors included training on the property and turnout with other horses. Also, in another study in Standardbred mares, 7/8 horses (Gordon et al. 2006) had gastric ulcers after 8 weeks of training, compared to 0/7 horses housed similarly and not trained.
 
Although racehorses have a high prevalence of EGUS, 56.5% of horses in endurance competition, show jumping, dressage or western performance and travel, had gastric ulcers (Hartmann and Frankeny 2003) after competition. Thus, even nonrace training and performance horses are at risk of developing EGUS and should be monitored for clinical signs(Nadeau 2009)
 
J Am Vet Med Assoc. 2007 Jun 1;230(11):1680-2.
 
Effects of short-term light to heavy exercise on gastric ulcer development in horses and efficacy of omeprazole paste in preventing gastric ulceration.
 
White G, McClure SR, Sifferman R, Holste JE, Fleishman C, Murray MJ, Cramer LG.
 
OBJECTIVE: To determine the effects of 8 days of light to heavy exercise on gastric ulcer development in horses and determine the efficacy of omeprazole paste in preventing gastric ulceration.). CONCLUSIONS AND CLINICAL RELEVANCE: Results showed that horses in light to heavy training for as short as 8 days were at risk of developing gastric ulcers and that administration of omeprazole paste decreased the incidence of gastric ulcers.
 
Conclusions: The study confirmed a high prevalence of ulcers in the gastric squamous mucosa of Standardbreds in race training. Of the studied parameters only status of training showed a significant association with gastric ulcers of the squamous mucosa.In a post mortem study, Hammond et al. (1986) showed a significantly higher prevalence (80%) of gastric ulcers among Thoroughbreds in race training compared with horses that had retired (52%), a finding supported by other authors (Murray et al. 1989, 1996; Vatistas et al. 1999b). (Jonssen 2006)
 
  
===Housing and Transport===
+
====Extrinsic ulcerogenic factors (RISK FACTORS)====
Housing in '''stables''' has been proposed as a risk factor for gastric ulcers, with more lesions being found in confined horses compared to those out at grass.(Murray and Eichorn1996).(Jonssen 2006).  However, when comparing solitary stable confinement with stabling next to a companion, and finally turn out in a paddock, Husted ''et al.'' found that the environmental circumstance had no effect on mucosal acid exposure in the equine stomach<ref>Husted, L, Sanchex, L.C, Olsen, S.N, Baptiste, K.E, Merritt, A.M (2008) Effect of paddock vs. stall housing on 24 hour gastric pH within the proximal and ventral equine stomach.  ''Equine Vet J'', 40(4):337-41.</ref>  '''Transport''' has also been shown to induce squamous mucosal ulceration(71 in Sanchez)
 
  
===Diet===
+
*'''Exercise:''' there appears to be a high prevalence of gastric ulcers in horses performing in most disciplines.<ref>Hartmann, A.M, Frankeny, R.L (2003) A preliminary investigation into the association between competition and gastric ulcer formation in non-racing performance horses.  ''J Equine Vet Sci'', 23:560-561.  In: Nadeau, J.A, Andrews, F.M (2009) ''Science: Overviews'' Equine gastric ulcer syndrome: The continuing conundrum.  ''Equine Vet J'', 41(7):611-615.</ref>  Although this may be related to exercise, other confounding factors related to these disciplines such as travel, diet, feeding regime, use of non-steroidal anti-inflammatory drugs (NSAIDs) and stress may be significant. However, Vatistas and co-workers (1999) were able to induce and maintain EGUS in racehorses in fast work without the use of NSAIDs or fasting before exercise.<ref name="Vatistas 2">Vatistas, N.J, Sifferman, R.L, Holste, J, Cox, J.L, Pinalto, G, Schultz, K.T (1999) Induction and maintenance of gastric ulceration in horses in simulated race training''Equine Vet J Suppl'', 29:40-44</ref>  There is also evidence that training for just 8 days is suffcient to induce gastric ulcers.<ref>White, G, McClure, S.R, Siifferman, R, Holste, J.E, Fleishman, C, Murray, M.J, Cramer, L.G (2007) Effects of short-term light to heavy exercise on gastric ulcer development in horses and efficacy of omeprazole paste in preventing gastric ulceration.  ''J Am Vet Med Assoc'', 230(11):1680-2.</ref> The higher prevalence of gastric ulcers at ''post mortem'' in racehorses in training compared to those in retirement is consistent with the hypothesis that exercise may be an important risk factor for EGUS.<ref name="Hammond">Hammond, C.J, Mason, D.K, Watkins, K.L (1986) Gastric ulceration in mature Thoroughbred horses.  ''Equine Vet J'', 18(4):284-287.</ref>  Strenuous exercise is known to stimulate '''gastrin release''' which has effects on HCl secretion, gastric emptying and gastric blood flow.  Diversion of blood to active muscle groups may further deprive the gastric mucosa of the perfusion required for its integrityIt is also thought that exposure of the squamous mucosa to acid is increased as the stomach is compressed by the abdominal viscera and diaphragm during excercise.<ref>Lorenzo-Figueras, M, Merritt, A.M (2002) Effects of exercise on gastric volume and pH in the proximal portion of the stomach of horses. ''Am J Vet Res'', 63:1481-1487.</ref>
'''Feed deprivation''' encourages gastric ulceration in two ways: (1) it removes the buffering capacity of protein leading to a reduced gastric pH (Murray and Schusser 1993) (2) it empties the stomach and exposes the squamous mucosa to the more mobile gastric juice.(Sandin 2000It is predictable, therefore, that an alternating feed-fast protocol produces a consistent model of ulcer induction in the equine squamous mucosa (36, 37, 66 in Sanchez)Despite this, feed deprivation is not a prerequisite for gastric ulceration in the horse(Vatistas 1998).  Diets that are plentiful in roughage prolong the mastication process and the production of salivary bicarbonate that protects the gastric mucosaA diet of '''high grain and low roughage''' thus predisposes to EGUS. (Nadeau 2009).  This sort of diet is commonly fed to racehorses but dietary components have also been shown to influence EGUS risk in nonracehorses<ref>Luthersson, N, Nielson, K.H, Harris, P, Parkin, T.D (2009) Risk factors associated with equine gastric ulceration syndrome (EGUS) in 201 horses in Denmark.  ''Equine Vet J'', 41(7):625-30.</ref>  Ponies fed a '''concentrate diet''' had a greaer prevalence of gastric ulcers than ponies fed hay alone.(Vatisats 2 1999) '''High starch meals''' are also a risk because they are fermented to volatile fatty acids (VFAs) and lactic acid and are emptied from the stomach relatively slowly (Metayer et al. 2004)(Taharaguchi et al. 2004; Boswinkel et al. 2007)(Nadeau 2009)
 
  
===Other ailments===
+
*'''Housing and Transport:'''  housing in '''stables''' has been proposed as a risk factor for gastric ulcers, with more lesions being found in confined horses compared to those out at grass.<ref>Murray, M.J, Eichorn, E.S (1996) Effects of intermittent feed deprivation, intermittent feed deprivation with ranitidine administration, and stall
 
+
confinement with ''ad libitum'' access to hay on gastric ulceration in horses.  ''Am J Vet Res'', 57:1599-1603.</ref>  However, when comparing solitary stable confinement with stabling next to a companion, and finally turn out in a paddock, Husted and colleagues (2008) found that the environmental situation had no effect on mucosal acid exposure in the equine stomach.<ref>Husted, L, Sanchex, L.C, Olsen, S.N, Baptiste, K.E, Merritt, A.M (2008) Effect of paddock vs. stall housing on 24 hour gastric pH within the proximal and ventral equine stomach. ''Equine Vet J'', 40(4):337-41.</ref>  Thus the reason for a higher prevalence of EGUS in stabled animals is unclear. '''Transport''' has also been shown to induce squamous mucosal ulceration in horses, by as yet, unidentified mechanisms.<ref>McClure, S.R, Carithers, D.S, Gross, S.J, Murray, M.J (2005) Gastric ulcer development in horses in a simulated show or training environment.  ''J Am Vet Med Assoc'', 227:775-777.</ref>
Conditions that produce abdominal pain or inappetance are likely to reduce food intake and predipose to gastric ulcers (Sandin 2000).  This may be the reason that '''colic''' and other gastrointestinal disorders have been associated with EGUS (Murray 1989, 1992; Furr and Murray 1989(Murray 1992). Alternatively, EGUS may be part of a more general gastrointestinal disease complex.(Vatistas 2 1999)  '''Stress''' induced by other clinical disorders has been reported to increase the prevalence of EGUS in neonatal foals (Furr et al. 1992) and a similar mechanism may exist for adult animals.(Vatistas 2 1999)
 
  
===NSAIDs===
+
*'''Diet and feeding regime:''' feed deprivation encourages gastric ulceration in three ways: (1) it precludes the buffering capacity of protein leading to a reduced gastric pH,<ref>Murray, M.J, Schusser, G.F (1993) Measurement of 24-h gastric pH using an indwelling pH electrode in horses unfed, fed and treated with ranitidine.  ''Equine Vet J'', 25:417-421. In: Sandin, A, Skidell, J, Haggstrom, J, Nilsson, G (2000) ''Postmortem'' findings of gastric ulcers in Swedish horses older than age one year: a retrospective study of 3715 horses (1924–1996). ''Equine Vet J'', 32(1):36-42.</ref> (2) it empties the stomach and exposes the squamous mucosa to the more mobile gastric juice<ref name="Sandin">Sandin, A, Skidell, J, Haggstrom, J, Nilsson, G (2000) ''Postmortem'' findings of gastric ulcers in Swedish horses older than age one year: a retrospective study of 3715 horses (1924–1996). ''Equine Vet J'', 32(1):36-42.</ref> and (3) it permits the accumulation of bile salts, which, together with HCl, cause greater squamous mucosal damage than HCl alone.<ref>Berschneider, H.M, Blikslager, A.T, Roberts, M.C (1999) Role of dudodenal relfux in nonglandular gastric ulcer disease of the mature horse. ''Equine Vet J Suppl'', 29:24-29.</ref>  It is unsurprising, therefore, that an alternating feed-fast protocol would produce a consistent model of ulcer induction in the equine squamous mucosa.<ref>Murray, M.J, Schusser, G.F (1993) Measurement of 24-h gastric pH using an indwelling pH electrode in horses unfed, fed and treated with ranitidine.  ''Equine Vet J'', 25:417-421.  In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref><ref>Murray, M.J (1994) Equine model of inducing ulceration in alimentary squamous epithelial mucosa.  ''Dig Dis Sci'', 39:2530-2535. In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>  Despite this, feed deprivation is not a prerequisite for gastric ulceration in the horse.<ref name="Vatistas thesis">Vatistas, N.J (1998) Gastric Ulceration in the Racing Thoroughbred.  ''PhD Thesis''.  In: Vatistas, N.J, Sifferman, R.L, Holste, J, Cox, J.L, Pinalto, G, Schultz, K.T (1999) Induction and maintenance of gastric ulceration in horses in simulated race training. ''Equine Vet J Suppl'', 29:40-44</ref>  Diets that are plentiful in roughage prolong the mastication process and the production of salivary bicarbonate that protects the gastric mucosa. A diet of '''high grain and low roughage''' thus predisposes to EGUS.<ref name="Nadeau"> In: Nadeau, J.A, Andrews, F.M (2009) ''Science: Overviews'' Equine gastric ulcer syndrome: The continuing conundrum. ''Equine Vet J'', 41(7):611-615.</ref>  This sort of diet is commonly fed to racehorses but dietary components have also been shown to influence EGUS risk in nonracehorses.<ref>Luthersson, N, Nielson, K.H, Harris, P, Parkin, T.D (2009) Risk factors associated with equine gastric ulceration syndrome (EGUS) in 201 horses in Denmark.  ''Equine Vet J'', 41(7):625-30.</ref>  Ponies fed a '''concentrate diet''' had a greater prevalence of gastric ulcers than ponies fed hay alone<ref name="Vatistas 2">Vatistas, N.J, Sifferman, R.L, Holste, J, Cox, J.L, Pinalto, G, Schultz, K.T (1999) Induction and maintenance of gastric ulceration in horses in simulated race training.  ''Equine Vet J Suppl'', 29:40-44</ref> and this may be because grain and pelleted feeds are asssociated with increased serum gastrin.<ref>Smyth, G.B, Young, D.W, Hammond, L.S (1988) Effects of diet and feeding on post-prandial serum gastrin and insulin concentrations in adult horses.  ''Equine Vet J Suppl'' 7:56-59.</ref>  '''High starch meals''' are also a risk because they are fermented to VFAs and lactic acid and are emptied from the stomach relatively slowly.<ref>Mètayer, N, Lhôte, M, Bahr, A, Cohen, N.D, Kim, I, Rousell, A.J, Julliand, V (2004) Meal size and starch content affect gastric emptying in horses.  ''Equine Vet J'', 36:434-440. In: Nadeau, J.A, Andrews, F.M (2009) ''Science: Overviews'' Equine gastric ulcer syndrome: The continuing conundrum.  ''Equine Vet J'', 41(7):611-615.</ref><ref>Taharaguchi, S, Okai, K, Orita, Y, Kuwano, M, Ueno, T, Taniyama, H (2004) Relation between amounts of concentrated feed given mares and gastric ulcers in foals.  ''J Japan Vet Med Ass'', 57:366-370.  In: Nadeau, J.A, Andrews, F.M (2009) ''Science: Overviews'' Equine gastric ulcer syndrome: The continuing conundrum.  ''Equine Vet J'', 41(7):611-615.</ref><ref>Boswinkel, A.M, Ellis, A.D, Sloet van Oldruitenborgh-Oosterbaan, M.M (2007) The influence of low versus high fibre haylage diets in combination with training or pasture rest on equine gastric ulceration syndrome (EGUS).  ''Pferdeheilkunde'', 23:123-130.  In: Nadeau, J.A, Andrews, F.M (2009) ''Science: Overviews'' Equine gastric ulcer syndrome: The continuing conundrum. ''Equine Vet J'', 41(7):611-615.</ref>
Nonsteroidal anti-inflammatory drugs (NSAIDs: phenylbutazone, flunixin meglumine) have been shown to cause gastric ulcers in horses. This is usually related to the use of a high dose or frequent administration of NSAIDs; however, therapeutic doses have been known to cause ulcers in horses. Recently, a study was conducted comparing the ulcerogenic effects of an orally administered prophenylbutazone drug, suxibuzone, to phenylbutazone (Monreal et al. 2004). Horses treated with phenylbutazone had more ulcerated areas and deeper ulcers than those in the suxibuzone treated or placebo groups. The authors concluded that suxibuzone causes significantly less ulcerogenic effects than phenylbutazone when administered orally at equimolar doses in horses. However, a more recent study in horses given suxibuzone or phenylbutazone at therapeutic doses for 14 days showed no significant difference in gastric ulcer scores when compared to each other and control horses receiving no treatment (Andrews et al. 2009). Thus, therapeutic doses of these NSAIDs did not lead to gastric ulcers more than what was observed in the untreated control group.
 
Another study evaluated the use of a combination of NSAIDs and gastric ulcers in horses. Phenylbutazone (2.2 mg/kg bwt per os, q. 12 h, for 5 days) or phenylbutazone (same dose) and flunixin meglumine (1.1 mg/kg bwt, i.v., q. 12 h, for 5 days) were administered to adult horses (Reed et al. 2006). In this study, total plasma protein and albumin decreased in NSAID treated horses and nonglandular gastric ulcer scores were significantly higher in horses treated with the 2 NSAID drugs. Thus, NSAIDs and a combination NSAID treatment should be approached with caution in horses.
 
Recently, firocoxib1, a new cox-2 inhibitor NSAID was approved for treatment of lameness in horses. Gastric ulcers were not detected in horses administered firocoxib (0.1 mg/kg bwt, per os, q. 24 h, 30 days) (Anon 2005). However, firocoxib is FDA approved for the control of pain and inflammation associated with osteoarthritis in horse, thus its efficacy in horses with abdominal pain is unknown. Furthermore, currently there is no i.v. formulation of this product, so it cannot be administered orally in horses with abdominal pain and gastric reflux or dysphagia. (Nadeau 2009)
 
Vet Ther. 2009 Fall;10(3):113-20.
 
Effects of top-dress formulations of suxibuzone and phenylbutazone on development of gastric ulcers in horses.
 
Andrews FM, Reinemeyer CR, Longhofer SL.
 
These findings suggest that when administered at the recommended label dose for 15 days, neither PBZ nor SBZ causes an increase in the number or severity of gastric ulcers over what would be expected with traditional stabling and intermittent feeding patterns. Also, PBZ-treated horses did not have more severe gastric ulcers than SBZ-treated horses, indicating that SBZ does not appear to offer an advantage over PBZ in preventing gastric ulcers when used at recommended label doses. However, ulcers in other regions of the gastrointestinal tract (e.g., right dorsal colon, duodenum) were not evaluated in horses in this study.
 
Administration of nonsteroidal anti-inflammatory drugs (NSAIDs) has been proven to cause ulcers in the glandular portion of the stomach (MacAllister et al. 1993), but in studies where primarily the squamous mucosa were studied, the same association was not evident (Hammond et al. 1986; Murray et al. 1989, 1996; McClure et al. 1999; Vatistas et al. 1999a; Rabuffo et al. 2002). (Jonssen 2006)
 
However, ulcers had healed in the majority of animals which were examined endoscopically 7 days following the final period of fasting (Murray 1994). Spontaneous resolution of ulcers is uncommon clinically in horses maintained in active training. Models have also used nonsteroidal anti-inflammatory medications (NSAIDs) to produce ulcers in ponies (Jones 1983; MacAllister and Sangiah 1993). Ulcers induced by the administration of NSAIDs may have a dissimilar endoscopic appearance to naturally occurring ulcers (D.R. Thompson, personal communication) and gastric ulceration in horses in race training is rarely associated with the administration of NSAIDs (Vatistas et al. 3994b; Murray et al. 1996; Vatistas 1998). In addition, ulcers caused by NSAID administration frequently affected the glandular mucosa (Furr and Murray 1989; Kuinaran and Bhuvanakumar 1994) and tended to heal spontaneously (Jones 1983; MacAllister and Sangiah 1993). both of which occunences are infrequent in the clinical setting (Vatistas and Snyder 1997; Vatistas 1998). Spontaneous healing of ulcers, following induction of ulceration by either fasting or NSAID administration, precludes the evaluation of anti-ulcer medication.(Vatistas 2 1999)
 
  
===Temperament===
+
*'''Other ailments:''' conditions that produce abdominal pain and/or inappetance are likely to reduce food intake and predipose to gastric ulcers.<ref name="Sandin">Sandin, A, Skidell, J, Haggstrom, J, Nilsson, G (2000) ''Postmortem'' findings of gastric ulcers in Swedish horses older than age one year: a retrospective study of 3715 horses (1924–1996). ''Equine Vet J'', 32(1):36-42.</ref>  This may be the reason that '''colic''' and other gastrointestinal disorders (especially those resulting in '''delayed gastric emptying''')<ref>Mertz, H.R, Walsh, J.H, (1991) Peptic ulcer pathophysiology.  ''Med Clin North Am'', 75:799-814. In: Sanchez, L.C (2010) 'Diseases of the stomach' in Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref> have been associated with EGUS.<ref>Furr, M.O, Murray, M.J (1989) Treatment of gastric ulcers in horses with histamine type 2 receptor antagonists.  ''Equine Vet J Suppl'', 7:77-79.</ref>  Alternatively, EGUS may be part of a more general gastrointestinal disease complex.<ref name="Vatistas 2">Vatistas, N.J, Sifferman, R.L, Holste, J, Cox, J.L, Pinalto, G, Schultz, K.T (1999) Induction and maintenance of gastric ulceration in horses in simulated race training. ''Equine Vet J Suppl'', 29:40-44</ref>
A nervous disposition has been linked with gastric ulcers (McClure et al. 1999) but the same association was not seen in another study (Vatistas et al. 1999a)(Jonssen 2006).
 
  
The results of our study suggest that, rather than training itself, the most stressful event may have been when horses entered their new environment..(Vatistas 2 1999)
+
*'''NSAIDs:''' as in [[Gastric Ulceration - all species|other species]], NSAIDs have been shown to cause gastric ulcers in horses.  Typically this is associated with high doses or frequent administration of '''phenylbutazone''' or '''flunixin meglumine'''.  However, although there is evidence to the contrary,<ref>Andrews, F.M, Reinemeyer, C.R, Longhofer, S.L (2009) Effects of top-dress formulations of suxibuzone and phenylbutazone on development of gastric ulcers in horses. ''Vet Ther'', 10(3):113-20.</ref>therapeutic doses of NSAIDs may be sufficient to induce EGUS.  Other studies have suggested that suxibuzone causes significantly less ulcerogenic effects than phenylbutazone when administered orally<ref>Monreal, L, Sabatè, D, Segura, D, Mayós, I, Homedes, J (2004) Lower gastric ulcerogenic effect of suxibuzone compared to phenylbutazone when administered orally to horses.  ''Res Vet Sci'', 76:145-149.  In: Nadeau, J.A, Andrews, F.M (2009) ''Science: Overviews'' Equine gastric ulcer syndrome: The continuing conundrum.  ''Equine Vet J'', 41(7):611-615.</ref>and that '''combination treatment''' with phenylbutazone and flunixin meglumine may be more risky than phenylbutazone alone.<ref>Reed, S.K, Messer, N.T, Tessman, R.K, Keegan, K.G (2006) Effects of phenylbutazone alone or in combination with flunixin meglumine on blood protein concentrations in horses.  ''Am J Vet Res'', 67:398-402.  In: Nadeau, J.A, Andrews, F.M (2009) ''Science: Overviews'' Equine gastric ulcer syndrome: The continuing conundrum.  ''Equine Vet J'', 41(7):611-615.</ref> The ulcers produced by NSAIDs are unusual in that they have a predilection for the glandular mucosa,<ref>MacAllister, C.G, Morgan, S.J, Borne, A.T, Pollet, R.A, (1993) Comparison of adverse effects of phenylbutazone, flunixin meglumine, and ketoprofen in horses.  ''J Am Vet Med Ass'', 202:71-77.  In: Jonsson, H, Egenvall, A (2006) Prevalence of gastric ulceration in Swedish Standardbreds in race training.  ''Equine Vet J'', 38(3):209-213.</ref><ref>Furr, M.O, Murray, M.J (1989) Treatment of gastric ulcers in horses with histamine type 2 receptor antagonists.  ''Equine Vet J Suppl'', 7:77-79.  In: Vatistas, N.J, Sifferman, R.L, Holste, J, Cox, J.L, Pinalto, G, Schultz, K.T (1999) Induction and maintenance of gastric ulceration in horses in simulated race training.  ''Equine Vet J Suppl'', 29:40-44</ref><ref>Kumaran, D, Bhuvanakumar, C.K (1994) Gastro duodenal ulceration in foals - a discussion.  ''Cenfaur Mylapore'', 10:83-86. In: Vatistas, N.J, Sifferman, R.L, Holste, J, Cox, J.L, Pinalto, G, Schultz, K.T (1999) Induction and maintenance of gastric ulceration in horses in simulated race training.  ''Equine Vet J Suppl'', 29:40-44</ref> they may look different endoscopically from ulcers that occur naturally,<ref name="Jonsson">Jonsson, H, Egenvall, A (2006) Prevalence of gastric ulceration in Swedish Standardbreds in race training.  ''Equine Vet J'', 38(3):209-213.</ref> and they appear to heal spontaneously.<ref>Jones, W.E (1983) Gastrointestinal ulcers [foal].  ''Equine Vet Data'', 4:305-308.  In: Vatistas, N.J, Sifferman, R.L, Holste, J, Cox, J.L, Pinalto, G, Schultz, K.T (1999) Induction and maintenance of gastric ulceration in horses in simulated race training.  ''Equine Vet J Suppl'', 29:40-44</ref><ref>MacAllister, C.G, Sangiah, S (1993) Effect of ranitidine (in healing of experimentally induced gastric ulcers in ponies.  ''Am J Vet Res'', 54:1103-1107.  In: Vatistas, N.J, Sifferman, R.L, Holste, J, Cox, J.L, Pinalto, G, Schultz, K.T (1999) Induction and maintenance of gastric ulceration in horses in simulated race training.  ''Equine Vet J Suppl'', 29:40-44</ref> Despite the well-established link bewteen NSAIDs and ulcers, NSAIDs are rarely responsible for the lesions in horses in race training.<ref>Vatistas N.J, Snyder, J.R, Carlson, G.P, Johnson, B, Arther, R.M, Thurmiind, M, Lloyd, K.C.K (1994) Epidemiology study of gastric ulcerarion in the Thoroughbred race horse: 202 horses.  ''Proc Am Ass Equine Pract'', 39:125-126.  In: Vatistas, N.J, Sifferman, R.L, Holste, J, Cox, J.L, Pinalto, G, Schultz, K.T (1999) Induction and maintenance of gastric ulceration in horses in simulated race training.  ''Equine Vet J Suppl'', 29:40-44</ref><ref>Murray, M.J, Schusser, G.F, Pipers, F.S, Gro:ss, S.J (1996) Factors associated with gastric lesions in Thoroughbred racehorses.  ''Equine Vet J'', 28:368-374.  In: Vatistas, N.J, Sifferman, R.L, Holste, J, Cox, J.L, Pinalto, G, Schultz, K.T (1999) Induction and maintenance of gastric ulceration in horses in simulated race training. ''Equine Vet J Suppl'', 29:40-44</ref><ref name="Vatistas thesis">Vatistas, N.J (1998) Gastric Ulceration in the Racing Thoroughbred.  ''PhD Thesis''.  In: Vatistas, N.J, Sifferman, R.L, Holste, J, Cox, J.L, Pinalto, G, Schultz, K.T (1999) Induction and maintenance of gastric ulceration in horses in simulated race training.  ''Equine Vet J Suppl'', 29:40-44</ref>
  
 +
*'''Infective agents:''' [[Helicobacter|''Helicobacter spp.'']] have been held responsible for the initiation and recurrence of human gastric ulcers.  ''Helicobacter equorum'' has been isolated from equine faecal samples<ref>Fox, J.G (2002) The non-''H.pylori'' helicobacters: their expanding role in gastorintestinal and systemic disease.  ''Gut'', 50:273-283.  In: Nadeau, J.A, Andrews, F.M (2009) ''Science: Overviews'' Equine gastric ulcer syndrome: The continuing conundrum.  ''Equine Vet J'', 41(7):611-615.</ref> and ''Helicobacter''-like DNA has been found in both foal faeces<ref>Moyaert, H, Haesebrouck, F, Dewulf, J, Ducatelle, R, Pasmans, F (2009) ''Helicobacter equorum'' is highly prevalent in foals.  ''Vet Microbiol'', 133:190-192.  In: Nadeau, J.A, Andrews, F.M (2009) ''Science: Overviews'' Equine gastric ulcer syndrome: The continuing conundrum. ''Equine Vet J'', 41(7):611-615.</ref> and the stomachs of mature horses.  However, such findings have been demonstrated in horses with and without gastric lesions<ref>Contreras, M, Morales, A, Garcia-Amado, M.A, DeVera, M, Bermudez, V, Gueneau, P (2007) Detection of ''Helicobacter''-like DNA in the gastric mucosa of Thoroughbred horses.  ''Letters in Appl Microbiol'', 45:553-337.  In: Nadeau, J.A, Andrews, F.M (2009) ''Science: Overviews'' Equine gastric ulcer syndrome: The continuing conundrum.  ''Equine Vet J'', 41(7):611-615.</ref>and in clinically healthy animals.  Any link between EGUS and ''Helicobacter'' remains weak at best, although there is a suggestion that colonisation of equine gastric ulcers with [[Escherichia coli|''E.coli'']] may delay their healing.<ref>Al Jassim, R.A.M, Scott, P.T, Trebbin, A.L, Trott, D, Pollitt, C.C (2006) The genetic diversity of lactic acid producing bacteria in the equine gastrointestinal tract.  ''FEMS Microbiol Letters'', 248:75-81.  In: Nadeau, J.A, Andrews, F.M (2009) ''Science: Overviews'' Equine gastric ulcer syndrome: The continuing conundrum. ''Equine Vet J'', 41(7):611-615.</ref>
  
Foals: associated with stress, hypoxia, altered gut motility and NSAIDs (PBZ and flunixin) or intercurrent disease or hospitalisation
+
*'''Temperament:''' a nervous disposition has been linked with gastric ulcers<ref>McClure, S.R, Glickman, L.T, Glickman, N.W (1999) Prevalence of gastric ulcers in show horses.  ''J Am Vet Med Ass 215:1130-1133.  In: In: Jonsson, H, Egenvall, A (2006) Prevalence of gastric ulceration in Swedish Standardbreds in race training.  ''Equine Vet J'', 38(3):209-213.</ref>but the same association was not seen in another study.<ref>Vatistas, N.J, Snyder, J.R, Carlson, G, Johnson, B, Arthur, R.M, Thurmond, M, Zhou, H, Lloyd, L.K (1999) Cross-sectional study of gastric ulcers of the squamous mucosa in Thoroughbred racehorses.  ''Equine Vet J Suppl'', 29:34-39.  In: Jonsson, H, Egenvall, A (2006) Prevalence of gastric ulceration in Swedish Standardbreds in race training.  ''Equine Vet J'', 38(3):209-213.</ref> 
Housing, stress, boredom, training, diet
+
 
Feeding practices:  
+
*'''Stress:''' the physiological and psychological stresses of training, housing, boredom, travel, mixing, hospitalisation and entering new environments<ref name="Vatistas 2">Vatistas, N.J, Sifferman, R.L, Holste, J, Cox, J.L, Pinalto, G, Schultz, K.T (1999) Induction and maintenance of gastric ulceration in horses in simulated race training.  ''Equine Vet J Suppl'', 29:40-44</ref> may increase the risk of developing EGUS.  Stress induced by other clinical disorders (including hypoxia) has been reported to increase the prevalence of EGUS in the '''glandular mucosa''' of neonatal foals<ref name="Furr">Furr, M.O, Murray, M.J, Ferguson, D.C (1992) The effects of stress on gastric ulceration, T3, T4, reverse T3 and cortisol in neonatal foals. ''Equine Vet J'', 24:37-40.</ref> and a similar mechanism may exist for adult animals.<ref name="Vatistas 2">Vatistas, N.J, Sifferman, R.L, Holste, J, Cox, J.L, Pinalto, G, Schultz, K.T (1999) Induction and maintenance of gastric ulceration in horses in simulated race training. ''Equine Vet J Suppl'', 29:40-44</ref>
*Grain and pelleted feed asssociated with increased serum gastrin (Smyth et al 1988)
+
 
*Eating behaviour (grazing vs feeds)
+
*Feed constituents (alfalfa)
+
It is clear that the aetiopathogenesis of EGUS is multifactorial.<ref name="Jonssen">Jonsson, H, Egenvall, A (2006) Prevalence of gastric ulceration in Swedish Standardbreds in race training.  ''Equine Vet J'', 38(3):209-213.</ref>  What remains uncertain, is how these various risk factors interact to produce lesions in different regions of the equine gastric mucosa.  Based on extrapolation from other species,<ref name="EGUC">The Equine Gastric Ulcer Council (1999) Tutorial Article: Recommendations for the diagnosis and treatment of equine gastric ulcer syndrome (EGUS).  ''Equine Vet Educ'', 11(5):262-272.</ref> it is conceivable that a reduction in mucosal blood flow might result from:
*Individual variability
+
*hypotensive shock (for example with blood loss, sepsis, endotoxaemia or fluid sequestration in colic)
Exercise and training
+
*an increase in sympathetic tone (which might be related to physiological or psychological stresses) or
*Strenuous exercise stimulates gastrin release which has effects on HCL secretion, gastric emptying, gastric blood flow
+
*other severe disease states (such as [[DIC|disseminated intravascular coagulation]]).
 +
Furthermore, any impairment of gastric motility (as seen with neurological imbalances, several types of colic and certain drugs) might be expected to increase the risk of ulceration.  Despite a lack of clarity, the final common pathway for EGUS appears to be the breaching of mucosal defences by acidic gastric contents.  Since horses secrete gastric HCl continuously, even in the fasted state,<ref>Campbell-Thompson, M.L, Merritt, A.M (1987) Effect of ranitidine on gastric acid secretion in young male horses.  ''Am J Vet Res'', 48:1511-1515.</ref> they are especially vulnerable to acid-associated damage.
  
 
==Clinical syndrome==
 
==Clinical syndrome==
  
The clinical signs associated with gastric ulcers are often very non-sepcific, difficult to document and at times only subjective.<ref name="Orsini">Orsini, J (2000) Tutorial Article Gastric ulceration in the mature horse: a review. ''Equine Vet Educ'', 12(1):24-27.</ref>  In addition, there appears to be a poor correlation between the severity of endoscopic lesions and the clinical presentation.<ref name="Murray 1989">Murray, M.J, Grodinsky, C, Anderson, C.W, Radue, P.F, Schmidt, G.R (1989) Gastric ulcers in horses: a comparison of endoscopic findings in horses with and without clinical signs.  ''Equine Vet J Suppl'', 7:68-72.</ref>  The significance of gastric ulceration in horses thus remains questionable.  However, there have been instances where ulcer treatment has preceded an improvement in clinical status and/or racing perfomance, suggesting that in some horses, ulcers are a considerable burden.<ref name="Orsini">Orsini, J (2000) Tutorial Article Gastric ulceration in the mature horse: a review. ''Equine Vet Educ'', 12(1):24-27.</ref>  Cases gastric ulceration are often asymptomatic, but signs that have been attributed to these lesions in '''mature horses''' include:
+
The clinical signs associated with gastric ulcers are often very non-sepcific, difficult to document and at times only subjective.<ref name="Orsini">Orsini, J (2000) Tutorial Article Gastric ulceration in the mature horse: a review. ''Equine Vet Educ'', 12(1):24-27.</ref>  In addition, there appears to be a poor correlation between the severity of endoscopic lesions and the clinical presentation.<ref name="Murray 1989">Murray, M.J, Grodinsky, C, Anderson, C.W, Radue, P.F, Schmidt, G.R (1989) Gastric ulcers in horses: a comparison of endoscopic findings in horses with and without clinical signs.  ''Equine Vet J Suppl'', 7:68-72.</ref>  The significance of gastric ulceration in horses thus remains questionable.  However, there have been instances where ulcer treatment has preceded an improvement in clinical status and/or racing perfomance, suggesting that in some horses, ulcers are a considerable burden.<ref name="Orsini">Orsini, J (2000) Tutorial Article Gastric ulceration in the mature horse: a review. ''Equine Vet Educ'', 12(1):24-27.</ref>  Cases of gastric ulceration are often asymptomatic, but signs that have been attributed to these lesions in '''mature horses''' include:
  
 
*Poor appetite (particularly decreased consumption of concentrates)<ref name="Sanchez">Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>
 
*Poor appetite (particularly decreased consumption of concentrates)<ref name="Sanchez">Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>
Line 102: Line 100:
 
*Excessive recumbency<ref name="EGUC">The Equine Gastric Ulcer Council (1999) Tutorial Article: Recommendations for the diagnosis and treatment of equine gastric ulcer syndrome (EGUS).  ''Equine Vet Educ'', 11(5):262-272.</ref>
 
*Excessive recumbency<ref name="EGUC">The Equine Gastric Ulcer Council (1999) Tutorial Article: Recommendations for the diagnosis and treatment of equine gastric ulcer syndrome (EGUS).  ''Equine Vet Educ'', 11(5):262-272.</ref>
 
*Mild to severe colic
 
*Mild to severe colic
**Mild, recurrent colic signs post-prandially<ref>Videla, R, Andrews, F.M (2009) New perspectives in equine gastric ulcer syndrome.  ''Vet Clin North Am Equine Pract'', 25(2):283-301.</ref>
+
**Mild, recurrent [[Colic Diagnosis - Clinical Signs|colic signs]] post-prandially<ref>Videla, R, Andrews, F.M (2009) New perspectives in equine gastric ulcer syndrome.  ''Vet Clin North Am Equine Pract'', 25(2):283-301.</ref>
 
**In one study, 49% of horses that presented for colic had gastric ulceration and those with duodenitis-proximal jejunitis had a trend towards a higher prevalence of gastric ulceration compared to those with other GI lesions.<ref>Dukti, S.A, Perkins, S, Murphy, J, Barr, B, Boston, R, Southwood, L.L, Bernard, W (2006) Prevalence of gastric squamous ulceration in horses with abdominal pain.  ''Equine Vet J'', 38:347-349.</ref>
 
**In one study, 49% of horses that presented for colic had gastric ulceration and those with duodenitis-proximal jejunitis had a trend towards a higher prevalence of gastric ulceration compared to those with other GI lesions.<ref>Dukti, S.A, Perkins, S, Murphy, J, Barr, B, Boston, R, Southwood, L.L, Bernard, W (2006) Prevalence of gastric squamous ulceration in horses with abdominal pain.  ''Equine Vet J'', 38:347-349.</ref>
 
*Changes in attitude (dullness or depression)<ref name="Orsini">Orsini, J (2000) Tutorial Article Gastric ulceration in the mature horse: a review. ''Equine Vet Educ'', 12(1):24-27.</ref>
 
*Changes in attitude (dullness or depression)<ref name="Orsini">Orsini, J (2000) Tutorial Article Gastric ulceration in the mature horse: a review. ''Equine Vet Educ'', 12(1):24-27.</ref>
Line 111: Line 109:
  
 
'''Clinical signs in foals vary depending on age and severity:'''
 
'''Clinical signs in foals vary depending on age and severity:'''
*'''Neonatal foals''': many ulcers are silent, some foals only exhibit signs when ulceration has become severe.  Glandular ulcers are considered the most significant<ref name="Sanchez">Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>
+
*'''Neonatal foals''': many ulcers are silent, some foals only exhibit signs when ulceration has become severe.  Glandular ulcers are considered the most significant<ref name="Sanchez">Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>.
 
**Poor appetite
 
**Poor appetite
 
**Diarrhoea
 
**Diarrhoea
Line 135: Line 133:
 
**Diarrhoea
 
**Diarrhoea
  
In foals with outflow obstruction distal to the common bile duct, marked reflux may be seen even with limited nursing.<ref name="Sanchez">Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>  GDUD is the primary differential for ptyalism in foals, other possible diagnoses include oesophageal obstruction and ''Candida'' infection.<ref name="Merck">Merck & Co (2008) The Merck Veterinary Manual (Eighth Edition), Merial</ref>
+
In foals with outflow obstruction distal to the common bile duct, marked reflux may be seen even with limited nursing.<ref name="Sanchez">Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref> Brown gastric fluid may signify bleeding ulcers or necrotizing enterocolitis. GDUD is the primary differential for ptyalism in foals, other possible diagnoses include oesophageal obstruction and ''Candida'' infection.<ref name="Merck">Merck & Co (2008) The Merck Veterinary Manual (Eighth Edition), Merial</ref>
  
 
==Diagnosis==
 
==Diagnosis==
Presumptive on clinical signs and response to treatment (Sanchez)
+
A presumptive diagnosis can be based on clinical signs and response to therapy,<ref name="Sanchez">Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref> however, a definitive diagnosis requires visualisation of the stomachThis can be achieved in the live horse using endsocopy or, alternatively, at ''post-mortem''.<ref name="Nadeau">Nadeau, J.A, Andrews, F.M (2009) ''Science: Overviews'' Equine gastric ulcer syndrome: The continuing conundrum.  ''Equine Vet J'', 41(7):611-615.</ref>
Definitive diagnosis requires endoscopy (cannot do in foals as need to starve prior to exam)
 
''EGUS was recently discussed at the 2010 Annual meeting between the Equine Insurers Forum (EIF) and the British Equine Veterinary Association (BEVA)The EIF maintained that in order to support claims for the long term costs associated with treatment of EGUS, there would be a requirement for veterinary surgeons to make a definitive diagnosis prior to prescribing omeprazole.(BEVA)''  
 
  
===Endoscopy===
+
''EGUS was recently discussed at the 2010 Annual meeting between the Equine Insurers Forum (EIF) and the British Equine Veterinary Association (BEVA).  The EIF maintained that in order to support claims for the long term costs associated with treatment of EGUS, there would be a requirement for veterinary surgeons to make a definitive diagnosis prior to prescribing omeprazole.''
Performed under mild sedation in standing horse or foal (Sanchez)
+
 
Duodenoscopy is most specific diagnostic method but is technically me chanllenegng than gastrocopy
+
====Endoscopy====
EGUS Lesion Scoring System publsihed based on consens by Equine Gastric Ulcer Council(2 in Sanchez)
+
 
 +
Oesophagogastroscopy or duodenoscopy can be performed under mild sedation (e.g. 0.6-0.8mg/kg xylazine<ref name="Orsini">Orsini, J (2000) Tutorial Article Gastric ulceration in the mature horse: a review. ''Equine Vet Educ'', 12(1):24-27.</ref>) in the standing horse.  Of these, duodenoscopy is the more specific but more technically demanding method.<ref name="Sanchez">Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>  Endoscopic examination requires preparatory starving of the patient for 6-8hours,<ref name="Orsini">Orsini, J (2000) Tutorial Article Gastric ulceration in the mature horse: a review. ''Equine Vet Educ'', 12(1):24-27.</ref> eliciting a certain degree of stress.  As such, it is preferable not to carry out this technique in foals.  Should endoscopy be necessary, any air introduced into the foal's stomach must be evacuated at the end of the procedure to avoid exacerbation of colic.<ref name="Sanchez">Sanchez, L.C (2010) 'Diseases Of The Stomach' in Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>  In adult horses, a minimum endoscope length of two metres is essential to visualize the gastric body and fundus.<ref name="Sanchez">Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>  A 2.8-3.0 metre endoscope is needed to observe the gastric antrum, pylorus and proximal dudoenum.<ref name="Sanchez">Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>  In either case, fibreoptic or videoendoscopic equipment can be used.<ref name="EGUC">The Equine Gastric Ulcer Council (1999) Tutorial Article: Recommendations for the diagnosis and treatment of equine gastric ulcer syndrome (EGUS).  ''Equine Vet Educ'', 11(5):262-272.</ref>  Based on a consensus, the Equine Gastric Ulcer Council (EGUC) published an EGUS Lesion Scoring System which they claimed to be simple and applicable to both regions of the equine gastric mucosa.<ref name="EGUC">The Equine Gastric Ulcer Council (1999) Tutorial Article: Recommendations for the diagnosis and treatment of equine gastric ulcer syndrome (EGUS).  ''Equine Vet Educ'', 11(5):262-272.</ref>  This last point has been debated, since most of the acquired data on gastric lesions refers only to the squamous mucosa.<ref name="Merritt">Merritt, A M (2009) Appeal for proper usage of the term ʻEGUSʼ: Equine gastric
 +
ulcer syndrome.  ''Equine Vet J'', 41(7):616.</ref>  At the time of writing however, the EGUC system appears to be widely used in practice:
  
 
{|cellpadding="10" cellspacing="0" border="1"
 
{|cellpadding="10" cellspacing="0" border="1"
Line 152: Line 150:
 
|-
 
|-
 
|Grade 0
 
|Grade 0
|Intact epithelium with no appearance of hyperaemia or hyperkeratosis
+
|Intact epithelium with no appearance of hyperaemia (reddening) or hyperkeratosis (yellowing of the squamous mucosa)
 
|-
 
|-
 
|Grade 1
 
|Grade 1
Line 158: Line 156:
 
|-
 
|-
 
|Grade 2
 
|Grade 2
|Small single of multifocal lesions
+
|Small single or multifocal lesions
 
|-
 
|-
 
|Grade 3
 
|Grade 3
Line 167: Line 165:
 
|}
 
|}
  
Diffuse reddeing or inflammation may be only lesion seen in cases of early duodenal disease
+
Diffuse inflammation may be the only lesion observed in foals with early GDUD.<ref name="Sanchez">Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>  In contrast to other scoring systems,<ref>MacAllister, C.G, Andrews F.M, Deegan E, Ruoff, W, Olovson, S.G (1997) A scoring system for gastric ulcers in horses.  ''Equine Vet J'', 29:430-433.</ref> the EGUC approach does not include bleeding when assigning lesion grades.  The justification is that the 'snapshot' provided by endoscopy may by chance identify bleeding of superficial erosions whilst missing the intermittent haemorrhage of more severe lesions.<ref name="EGUC">The Equine Gastric Ulcer Council (1999) Tutorial Article: Recommendations for the diagnosis and treatment of equine gastric ulcer syndrome (EGUS).  ''Equine Vet Educ'', 11(5):262-272.</ref>  Endoscopy may assist in understanding the severity of the disease and assessing the therapeutic response, but it is not without disadvantages.  Ulcer severity may be underestimated, particularly in the squamous region and glandular ulcers may be missed altogether.<ref>Andrews, F.M, Reinmeyers, C.R, McCracken, M.D, Blackford, J.T, Nadeau, J.A, Saabye, L, Sotell, M, Saxton, A (2002) Comparison of endoscopic, necropsy and histology scoring of equine gastric ulcers.  ''Equine Vet J'',34(5):475-478.</ref>  Lesions that appear grossly similar may have different grades on histopathology.<ref name="Nadeau">Nadeau, J.A, Andrews, F.M (2009) ''Science: Overviews'' Equine gastric ulcer syndrome: The continuing conundrum.  ''Equine Vet J'', 41(7):611-615.</ref>  This is important because varying lesions may have different causes, requiring a range of treatment approaches.
In older foals with GDUD, detection ofgastrci outflow obsturction is critical to therapeutic plan and appropriate prognosis (Sanchez)
 
  
Minimum endoscope length of two metres and 2.8-3.0 metre instruments are required for duodenoscopy
+
====Other Imaging====
A 3 mtre endoscope allows visualization of stomach, pyrlorus and proximal duodenum (Sanchez)
 
Shorter scopes permit investigation fo gastric body and fundus only (Sanchez)
 
Maximum external diameter of 9mm for neonates (Sanchez)
 
Foals - lesions mainly in glandular epithelium
 
Adults - margo plicatus and squamous epithelium
 
  
Abdominal radiography without contrast in foals with outflow obsturction typically rveeals very disticnt enlarged, gas-filled stomach.  Liquid barium contrast will either have markedly delayed (with incomplete obstruction) oir no (complete onsbtruction) outflow. (Sanchez)
+
In older foals with GDUD, detection of gastric outflow obstruction via abdominal radiography is essential to treatment and prognosis.<ref name="Sanchez">Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>  Liquid barium will demonstrate very delayed or no outflow depending on the degree of obstruction.  Without contrast medium, a large, gas filled stomach will be obvious.<ref name="Sanchez">Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref> The need to perform contrast radiography must be weighed against the stress it would place upon the foal.  If gastric rupture is suspected, abdominal ultrasound can be used to identify free fluid in the abdomen and abdominocentesis may confirm the diagnosis.<ref name="Sanchez">Sanchez, L.C (2010) 'Diseases Of The Stomach' in Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>
  
===Biopsy===
+
====Biopsy====
 +
A transendoscopic gastric biopsy technique was recently validated for obtaining samples from the gastric glandular mucosa in the live horse.<ref>Rodrigues, N.L, Dore, M, Doucet, M.Y (2009) Validation of a transendoscopic glandular and nonglandular gastric biopsy technique in horses.  ''Equine Vet J'', 41(7):631-5.</ref>Unfortunately this technique failed to produce samples of squamous mucosa that would be suitable for histopathological analysis.
 +
[[Image:Gastric ulcer pathology.jpg|300px|thumb|right|''' Flow chart depicting the proposed pathogenesis of ulcerative lesions of the equine squamous gastric mucosa''.  Created by Nina Rzechorzek, July 2010.  ''Information sourced from Martineau ''et al.'', 2009<ref name="Martineau 2">Martineau, H, Thompson, H, Taylor, D (2009) Pathology of gastritis and gastric ulceration in the horse. Part 2: a scoring system.  ''Equine Vet J'',41(7):646-51.</ref>'' ''']]
  
A transendoscopic gastric biopsy technique was recently validated for obtaining samples from the gastric glandular mucosa in the live horse.<ref>Rodrigues, N.L, Dore, M, Doucet, M.Y (2009) Validation of a transendoscopic glandular and nonglandular gastric biopsy technique in horses.  ''Equine Vet J'', 41(7):631-5.</ref>Unfortunately this technique failed to produce samples of squamous mucosa that would be suitable for histopathological analysis.
+
====Laboratory tests====
  
===Laboratory tests===
+
Currently, useful and reliable markers for EGUS are lacking.<ref name="EGUC">The Equine Gastric Ulcer Council (1999) Tutorial Article: Recommendations for the diagnosis and treatment of equine gastric ulcer syndrome (EGUS).  ''Equine Vet Educ'', 11(5):262-272.</ref>  The SUCCEED® Equine Fecal Blood Test™ uses specific equine monoclonal antibodies to albumin and haemoglobin to detect occult blood in faeces.<ref>Carter, S, Pellegrini, F.A (2006) The use of novel antibody tools to detect the presence of blood in equine feces.  ''Company Bulletin Freedom Health LLC'' 1-3.  In: Nadeau, J.A, Andrews, F.M (2009) ''Science: Overviews'' Equine gastric ulcer syndrome: The continuing conundrum.  ''Equine Vet J'', 41(7):611-615.</ref><ref>Pellegrini, F.L, Carter, S.D (2007) An equine necroscopic study to determine the
The detection of occult blood in faeces has proven unreliable in the horse and currently, useful laboratory markers for EGUS are lacking.<ref name="EGUC">The Equine Gastric Ulcer Council (1999) Tutorial Article: Recommendations for the diagnosis and treatment of equine gastric ulcer syndrome (EGUS).  ''Equine Vet Educ'', 11(5):262-272.</ref>  Tests that require further analysis for sensitivity and specificity<ref name="Sanchez">Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref> include:
+
sensitivity and specificity of a dual antibody test.  ''Company Bulletin Freedom Health LLC'' 1-2.  In: Nadeau, J.A, Andrews, F.M (2009) ''Science: Overviews'' Equine gastric ulcer syndrome: The continuing conundrum.  ''Equine Vet J'', 41(7):611-615.</ref>The test has a positive predictive value of 77% and a negative predictive value of 72% and thus cannot be relied upon alone to diagnose EGUS.<ref name="Nadeau">Nadeau, J.A, Andrews, F.M (2009) ''Science: Overviews'' Equine gastric ulcer syndrome: The continuing conundrum.  ''Equine Vet J'', 41(7):611-615.</ref>  False positive results may arise from rectal trauma (e.g. recent biopsy or rectal examination) or protein losing enteropathy.<ref name="Nadeau">Nadeau, J.A, Andrews, F.M (2009) ''Science: Overviews'' Equine gastric ulcer syndrome: The continuing conundrum.  ''Equine Vet J'', 41(7):611-615.</ref>  Other tests that require further analysis for sensitivity and specificity<ref name="Sanchez">Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref> include:
 
*Urine<ref>O'Connor, M.S, Steiner, J.M, Roussel, A.J, ''et al.'' (2004) Evaluation of urine sucrose concentration for detection of gastric ucleration in horses.  ''Am J Vet Res'', 65:31-39.  In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref> and blood<ref>Hewetson, M, Cohen, N.D, Love, S, ''et al.'' (2006) Sucrose concentration in bood: a new method for assessment of gastric permeability in horses with gastric ulceration.  ''J Vet Intern Med'', 20:388-394.  In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref> sucrose absorption as an assay of gastric mucosal permeability
 
*Urine<ref>O'Connor, M.S, Steiner, J.M, Roussel, A.J, ''et al.'' (2004) Evaluation of urine sucrose concentration for detection of gastric ucleration in horses.  ''Am J Vet Res'', 65:31-39.  In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref> and blood<ref>Hewetson, M, Cohen, N.D, Love, S, ''et al.'' (2006) Sucrose concentration in bood: a new method for assessment of gastric permeability in horses with gastric ulceration.  ''J Vet Intern Med'', 20:388-394.  In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref> sucrose absorption as an assay of gastric mucosal permeability
*Serum alpha1-antitrypsin which has been detected more frequently in foals with gastric ulceration<ref>Taharaguchi, S, Nagano, A, Okai, K, ''et al.'' (2007) Detection of an isoform of alpha(1)-antitrypsin in serum samples from foals with gastric ulcers.  ''Vet Rec'', 161:338-342.  In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>
+
*Serum alpha1-antitrypsin may be released from damaged gastric tissue<ref name="Nadeau">Nadeau, J.A, Andrews, F.M (2009) ''Science: Overviews'' Equine gastric ulcer syndrome: The continuing conundrum.  ''Equine Vet J'', 41(7):611-615.</ref> and has been detected more frequently in foals with gastric ulceration<ref>Taharaguchi, S, Nagano, A, Okai, K, ''et al.'' (2007) Detection of an isoform of alpha(1)-antitrypsin in serum samples from foals with gastric ulcers.  ''Vet Rec'', 161:338-342.  In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>
  
===Pathology===
+
====Pathology====
 +
 
 +
Martineau and co-workers (2009) demonstrated that in a mixed population of horses, a wide range of lesions associated with EGUS could be found at ''post mortem''.<ref name="Martineau">Martineau, H, Thompson, H, Taylor, D (2009) Pathology of gastritis and gastric ulceration in the horse. Part 1: range of lesions present in 21 mature individuals.  ''Equine Vet J'',41(7):638-44.</ref>  These included hyperkeratosis, punctate scars, diffuse erosions or ulcerations and ''margo injuria'' in the squamous region and hyperaemia, focal erosions and ulcerations in the glandular region.  A novel finding was glandular metaplasia which may be evidence of a protective mechanism developing in response to acid exposure.<ref name="Martineau">Martineau, H, Thompson, H, Taylor, D (2009) Pathology of gastritis and gastric ulceration in the horse. Part 1: range of lesions present in 21 mature individuals.  ''Equine Vet J'',41(7):638-44.</ref>  The authors then devised a pathological scoring system - the '''Equine Gastritis Grading (EGG) system''' - which uses 5 samples of gastric mucosa taken from specific regions of the equine stomach.  For each of these, the inflammatory infiltrate is graded by type, density and location, reactive changes are classified in both squamous and glandular samples and the presence or absence of infectious agents and lymphoid follicles is noted.<ref name="Martineau 2">Martineau, H, Thompson, H, Taylor, D (2009) Pathology of gastritis and gastric ulceration in the horse. Part 2: a scoring system.  ''Equine Vet J'',41(7):646-51.</ref>  From their findings, a pathogenesis for the development of lesions in the squamous region was proposed:
  
 
==Treatment==
 
==Treatment==
Proton pump inhibitors: only omeprazole (Gastroguard) is licensed for horses.  Given PO once daily (4mg/kg) for 3-4 wks, most effective drug at controlling HCl secretion (decreases basal and stimulated release).  Expensive and not absorbed in foas with diarrhoea
 
Histamine H2 receptor antagonists:
 
*ranitidine 7mg/kg TID for 3-4wks
 
*cimetidine 25mg/kg QID for 3-4wks (cheaper but less effective so must be given more frequently)
 
Gastric protectants: sucralfate 10-20mg/kg TID for 2-4wks
 
Antacids: magnesium and aluminium hydroxides (NOT recommended as have massive rebound effect)
 
  
Foals:
+
====Histamine 2 receptor antagonists====
Omeprazole 4mg/kg PO SID (preferred)
+
 
Ranitidine (Zantac, Zeneca, UK) 6mg/kg TID PO, 1-2mg/kg IV BID (second choice)
+
Parietal cells secrete HCl upon stimulation of histamine, acetylcholine or gastrin receptors.<ref name="EGUC">The Equine Gastric Ulcer Council (1999) Tutorial Article: Recommendations for the diagnosis and treatment of equine gastric ulcer syndrome (EGUS).  ''Equine Vet Educ'', 11(5):262-272.</ref>  Competitive H2 receptor antagonists have successfully elevated gastric pH and treated gastric ulcers in mature horses and foals.<ref name="Lester">Sanchez, L.C, Lester, G.D, Merritt, A.M (1998) Effect of ranitidine on intragastric pH in clinically normal neonatal foals.  ''J Am Vet Med Assoc'', 212:1407-1412.</ref><ref>Becht, J.L, Byars, T.D (1986) Gastroduodenal ulceration in foals.  ''Equine Vet J'', 18:307-312.</ref>  There appears to be a great variability among horses in their dose requirements for H2 antagonists which may be explained by individual bioavailability for these compounds.<ref name="EGUC">The Equine Gastric Ulcer Council (1999) Tutorial Article: Recommendations for the diagnosis and treatment of equine gastric ulcer syndrome (EGUS).  ''Equine Vet Educ'', 11(5):262-272.</ref>  Currently recommended doses for cimetidine, ranitidine and f amotidine proposed to be effective in the majority of horses have been recommended by Sanchez.<ref name="Sanchez">Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>
Sucralfate (Antepsin, Wyeth Labs, Maidenhead, UK)(intestinal mucosal protective), 2-4g total dose or 50kg per foal QID PO (in theory best effect of this compound is in acid medium so should not be given at the same time or after H2 blockers btu latest research shows it appears to work just as well if given at the same time and this reduces stress of handling), NB nto a good prophylactic
+
 
Antacids not good - rebound effect
+
====Proton-pump inhibitors (PPIs)====
Metocloprmade, gastrci decompression (foals with severe gastor0duodenal stenosis), analgesia (butorphenol or pethidine or morphine NOT NSAIDs)
+
 
Supportive nursing by reducing stressors, milk and saliva have preventative effects so good feeding habits should be encouraged
+
PPIs irreversibly bind to the H+K+-ATPase proton pump of the parietal cell and block the secretion of hydrogen ions.  These agents are more effective than H2 antagonsists as their action is receptor-independent,<ref name="EGUC">The Equine Gastric Ulcer Council (1999) Tutorial Article: Recommendations for the diagnosis and treatment of equine gastric ulcer syndrome (EGUS).  ''Equine Vet Educ'', 11(5):262-272.</ref> blocking the final pathway of acid secretion and they have a prolonged effect allowing for once-daily dosing.<ref>Papich, M.G (1993) Anti-ulcer therapy.  ''Vet Clin N Am'', 202:1465-1468.</ref>  '''Omeprazole (Gastroguard™)''', a subsituted benzimidazole, is currently the only PPI licensed for use in horses.  At a dose rate of 4mg/kg per day omeprazole has proven effective in reducing the severity of gastric ulcers in Thoroughbred horses in active race training<ref name="Vatistas">Vatistas, N.J, Snyder, J.R, Nieto, J, Thompson, D, Pollmeier, M, Holstes, J (1999) Acceptability of a paste formulation and efficacy of high dose omeprazole in healing gastric ulcers in horses maintained in race training.  ''Equine Vet J Suppl'', 29:71-76.</ref> and no adverse effects have been observed.  The paste formulation is easy to administer and is generally well accepted by horses.  Omeprazole has demonstrated efficacy in the resolution of both naturally-occurring and NSAID-induced gastric ulcers in horses.<ref name="MacAllister">MacAllister, C.G, Sifferman, R.L, McClure, S.R ''et al.'' (1999) Effects of omeprazole paste on healing of spontaneous gastric ulcers in horses and foals: a field trial. ''Equine Vet J Suppl'', 77-80. In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref><ref>Murray, M.J, Haven, M.L, Eichorn, E.S, ''et al.'' (1997) Effects of omeprazole on healing of naturally-occurring gastric ulcers in thoroughbred racehorses.  ''Equine Vet J'', 29:425-429.  In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>  A single dose has also produced an increase in gastric pH in clinically ill neonatal foals<ref>Javsicas, L.H, Sanchez, L.C (2008) The effect of omeprazole paste on intragastric pH in clinically ill neonatal foals.  ''Equine Vet J'', 40(1):41-4.</ref> and has contributed to ulcer healing in neonates.<ref name="MacAllister">MacAllister, C.G, Sifferman, R.L, McClure, S.R ''et al.'' (1999) Effects of omeprazole paste on healing of spontaneous gastric ulcers in horses and foals: a field trial.  ''Equine Vet J Suppl'', 77-80.  In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>  A potential concern is that altering gastric pH may encourage bacterial overgrowth.  Thus further work is needed to evaluate the long-term safety of omeprazole in horses and particularly, foals.<ref name="Vatistas">Vatistas, N.J, Snyder, J.R, Nieto, J, Thompson, D, Pollmeier, M, Holstes, J (1999) Acceptability of a paste formulation and efficacy of high dose omeprazole in healing gastric ulcers in horses maintained in race training.  ''Equine Vet J Suppl'', 29:71-76.</ref>
Corn oil (50ml q6h) reportedly anti-ulcerogenic (increases PG production)
+
 
PG analogues (Misoprostenol) 5microgram/kg PO q8h
+
====Antacids====
 +
 
 +
The use of antacids to treat EGUS in the horse has not been critically evaluated<ref name="Sanchez">Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref> and some believe they are contraindicated due to potential '''rebound effects'''.  Furthermore, the requirement for frequent dosing of large volumes of these products (owing to their poor efficacy) makes them an unattractive, stressful and impractical alternative to omeprazole.<ref name="Orsini">Orsini, J (2000) Tutorial Article Gastric ulceration in the mature horse: a review. ''Equine Vet Educ'', 12(1):24-27.</ref>
 +
 
 +
====Mucosal protectants====
 +
 
 +
'''Sucralfate''' is a complex salt of sucrose and aluminium hydroxide.  It is thought to promote ulcer healing via several mechanisms: adherence to ulcerated mucosa, stimulation of mucus secretion, pepsin inibition, increasing PGE synthesis and enhancing the local production of epidermal growth factor.<ref name="Sanchez">Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>  It has been used effectively to treat and prevent stress-induced ulcers in man and has been recommended for the treatment of glandular ulcers in horses.<ref>Murray, M.J (1994) Gastric ulcers in adult horses.  ''Comp Cont Educ Pract Vet'', 16:792-794,797.  In: Orsini, J (2000) Tutorial Article Gastric ulceration in the mature horse: a review. ''Equine Vet Educ'', 12(1):24-27.</ref>  However, the effect of sucralfate on equine squamous gastric ulcers remains inconclusive<ref name="EGUC">The Equine Gastric Ulcer Council (1999) Tutorial Article: Recommendations for the diagnosis and treatment of equine gastric ulcer syndrome (EGUS).  ''Equine Vet Educ'', 11(5):262-272.</ref> and the product may be ineffective in the alkaline conditions created by acid suppression agents.<ref>Danesh, J.Z, Duncan, A, Russell, R.I, Mitchell, G (1988) Effect of intragastric pH on mucosal protective action of sucralfate.  ''Gut'', 29:1379-1385.  In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>
 +
 
 +
====Prostaglandin analogues====
 +
 +
Synthetic PGE1 analogues are believed to inihibit gastric acid secretion and enhance mucosal cytoprotection.<ref>Leandro, G, Pilotto, A, Franceschi, M ''et al.'' (2001) Prevention of acute NSAID-related gastroduodenal damage: a meta-analysis of controlled clinical trials.  ''Dig Dis Sci'', 46:1924-1936.  In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>  '''Misoprostol''' has been an effective agent in the treatment of human gastric and duodenal ulcers and has been shown to increase gastric pH in horses.<ref>Sangiah, S, MacAllister, C.C, Amouzadeh, H.R (1989) Effects of misoprostol and omeprazole on basal gastric pH and free acid content in horses.  ''Res Vet Sci'', 47:350-354.  In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref> Although contraindicated in pregnant mares, Misoprostol may be beneficial for mucosal recovery in the face of flunixin treatment.<ref>Tomlinson, J.E, Blikslager, A.T (2005) Effects of cyclooxygenase inhibitors flunixin and deracoxib on permeability of ischaemic-injured equine jejunum.  ''Equine Vet J'', 37:75-80.  In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>
 +
 
 +
====Gastric prokinetics====
 +
 
 +
In cases of gastrooesophageal reflux, duodenal disease and delayed gastric emptying without a serious physical obstruction to gastric outflow, gastric prokinetics might be considered.<ref name="Sanchez">Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>  Such compounds include bethanechol, metaclopramide, erythromycin and cisapride which have been shown to hasten gastric empyting in adult horses.<ref name="EGUC">The Equine Gastric Ulcer Council (1999) Tutorial Article: Recommendations for the diagnosis and treatment of equine gastric ulcer syndrome (EGUS).  ''Equine Vet Educ'', 11(5):262-272.</ref>  To date only the parasympathomimetic agent '''bethanechol''' has been used as an adjunct for EGUS and cholinergic side effects are possible.  Cisapride has been withdrawn from the US and UK markets over concern about its potential to cause adverse cardiac effects in man.<ref name="Sanchez">Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>
 +
 
 +
====Treatment problems====
 +
The prevalence of gastric ulcers in horses remains high regardless of the common use of antiulcer treatments.  This has been attributed to the expense of recommended products encouraging subtherapeutic and curtailed dosing schedules.<ref>Orsini, J.A, Haddock, M, Stine, L, Sullivan, E.K, Rabuffo, T.S, Smith, G (2003) Odds of moderate or severe gastric ulceration in racehorses receiving antiulcer medications.  ''J Am Vet Med Ass'', 223:336-339.  In: Nadeau, J.A, Andrews, F.M (2009) ''Science: Overviews'' Equine gastric ulcer syndrome: The continuing conundrum. ''Equine Vet J'', 41(7):611-615.</ref>  Omeprazole and ranitidine must be administered for at least 28 days for adequate ulcer healing.<ref name="Nadeau">Nadeau, J.A, Andrews, F.M (2009) ''Science: Overviews'' Equine gastric ulcer syndrome: The continuing conundrum.  ''Equine Vet J'', 41(7):611-615.</ref>  In the USA, compounded omeprazole from bulk powders are used as a cheaper substitute for the FDA approved products. However, these formulations lack efficacy and are not regulated.<ref>Nieto, J.E, Spier, S, Pipers, F.S, Stanley, S, Aleman, M.R, Smith, D.C, Snyder, J.R (2002) Comparison of paste and suspension formulations of omeprazole in the healing of gastric ulcers in racehorses in active training.  ''J Am Vet Med Ass'', 221: 1139-1143.  In: Nadeau, J.A, Andrews, F.M (2009) ''Science: Overviews'' Equine gastric ulcer syndrome: The continuing conundrum.  ''Equine Vet J'', 41(7):611-615.</ref>  A considerable challenge lies in the management of abdominal pain associated with EGUS, since the commonly used NSAIDs for pain control may worsen and even induce further ulcerative lesions.<ref>Videla, R, Andrews, F.M (2009) New perspectives in equine gastric ulcer syndrome.''Vet Clin North Am Equine Pract'', 25(2):283-301.</ref>  Another challenge is the horse in which oral medication is prohibited.  However, Andrews and colleagues (2006) have demonstrated the efficacy of an omeprazole powder, adminstered IV in sterile water, which signifcantly increases the pH of equine gastric contents and may be useful in problem horses.<ref name="Andrews 2006">Andrews, F.M, Frank, N, Sommardahl, C.S, Buchanan, B.R, Elliott, S.B, Allen, V.A (2006) Effects of intravenously administrated omeprazole on gastric juice pH and gastric ulcer scores in adult horses.  ''J Vet Intern Med'', 20(5):1202-6.</ref>  An ongoing point of debate is the use of antiulcer medication in competition horses.  In 2000, the Bureau of '''The Fèdèration Equestre Internationale (FEI)''' permitted the use of cimetidine, ranitidine and omeprazole to prevent and treat gastric ulcers.  This decision was based on evidence that the compounds were not performance enhancing and that EGUS was such a widespread concern. However, these drugs are still listed under prohibited substances in the '''2009 Appendices of the American Endurance Ride Conference (AERC) Rules and Regulations'''.  The argument is that a horse requiring such treatment is not suffciently well to compete and should be withdrawn from competition if it needs preventative medication.  A related concern is that the AERC permits the use of hyperosmolar oral electrolyte pastes which may cause gastric ulcers.<ref>Holbrook, T.C, Simmons, R.D, Payton, M.E, MacAllister, C.G (2005) Effect of repeated oral administration of hypertonic electrolyte solution on equine gastric mucosa.  ''Equine Vet J'', 37: 501-504.</ref>  Without the protection afforded by antiulcer agents, these horses may be at considerable risk for EGUS.<ref name="Nadeau">Nadeau, J.A, Andrews, F.M (2009) ''Science: Overviews'' Equine gastric ulcer syndrome: The continuing conundrum.  ''Equine Vet J'', 41(7):611-615.</ref>
  
 
==Prognosis==
 
==Prognosis==
Complications:
+
Improvement in most clinical signs should be noted within 1-3 weeks of commencing treatment.  Colic or diarrhoea should resolve within 48 hours.<ref name="Sanchez">Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>  '''Complications''' related to gastric ulcers are most frequent and severe in foals with GDUD.  They include gastric or duodneal perforation, delayed gastric emptying, gastroesophageal reflux and oesophagitis, ascending cholangitis and megaoesophagus or aspiration pneumonia<ref>Murray, M.J, Ball, M.M, Parker, G.A (1988) Megaoesophagus and aspiration pneumonia secondary to gastric ulceration in a foal.  ''J Am Vet Med Assoc'', 192:381-383.</ref> secondary to chronic gastroesophageal reflux. Sudden '''gastric perforation''' without prior signs occurs sporadically in foals.<ref name="Merck">Merck & Co (2008) The Merck Veterinary Manual (Eighth Edition), Merial</ref>Ulcers in the proximal duodenum or at the pylorus can cause fibrosis and stricture. The latter complication is seen in both foals and adult horses.<ref name="Merck">Merck & Co (2008) The Merck Veterinary Manual (Eighth Edition), Merial</ref>  In mature animals, the most common complication is the recurrence of EGUS after treatment has ceased.  This is typically because the inciting managemental causes have not been altered.
*Recurrence if management not altered
 
*Perforation and peritonitis (rare - foals)
 
*Pyloric stenosis (rare - foals)
 
  
Complications related to gastric ulcers are most frequent and severe in foals and include perforation, delayed gastric emptying, gastroesophageal reflux and oesophagitis, and megaoesophagus secondary to chronic gastroesophageal reflux. Sudden gastric perforation without prior signs occurs sporadically in foals.<ref name="Merck">Merck & Co (2008) The Merck Veterinary Manual (Eighth Edition), Merial</ref>Ulcers in the proximal duodenum or at the pylorus can cause fibrosis and stricture. The latter complication is seen in both foals and adult horses. In rare cases, severe gastric ulceration causes fibrosis and contracture of the stomach.<ref name="Merck">Merck & Co (2008) The Merck Veterinary Manual (Eighth Edition), Merial</ref>
+
==Prevention==
 +
====Management====
  
==Prevention==
+
*'''Diet:''' ideally turnout to good quality grass.  Stabled horses should have continuous access to hay and should be offered this before calorific needs are met by concentrates.<ref name="Orsini">Orsini, J (2000) Tutorial Article Gastric ulceration in the mature horse: a review. ''Equine Vet Educ'', 12(1):24-27.</ref>  Alfalfa, or another high calcium or high protein forage may be preventative by increasing gastric pH.<ref>Nadeau, J.A, Andrews, F.M, Mathews, A.M, Argenzio, R.A, Blackford, J.T, Saxton, A.M (2000) Evaluation of diet as a cause of gastric ulcers in horses.  ''Am J Vet Res'', 61:784-790.  In: Nadeau, J.A, Andrews, F.M (2009) ''Science: Overviews'' Equine gastric ulcer syndrome: The continuing conundrum. ''Equine Vet J'', 41(7):611-615.</ref><ref>Lybbert, T, Gibbs, P, Cohen, N, Scott, B, Sigler, D (2007) Feeding alfalfa hay to exercising horses reduces the severity of gastric mucosal ulceration.  ''Proc Am Ass Equine Practnrs'', 53:525-526.  In: Nadeau, J.A, Andrews, F.M (2009) ''Science: Overviews'' Equine gastric ulcer syndrome: The continuing conundrum. ''Equine Vet J'', 41(7):611-615.</ref>  Concentrates should be fed at '''no more than 0.5kg per 100kg body weight''' and not more frequently than every 6 hours.<ref name="Andrews 2006">Andrews, F.M, Frank, N, Sommardahl, C.S, Buchanan, B.R, Elliott, S.B, Allen, V.A (2006) Effects of intravenously administrated omeprazole on gastric juice pH and gastric ulcer scores in adult horses.  ''J Vet Intern Med'', 20(5):1202-6.</ref>  Horses prone to, or at risk of, EGUS should be fed the minimum amount of concentrates necessary.<ref name="Nadeau">Nadeau, J.A, Andrews, F.M (2009) ''Science: Overviews'' Equine gastric ulcer syndrome: The continuing conundrum. ''Equine Vet J'', 41(7):611-615.</ref>
Gastroguard at lower dose (1-2mg/kg) daily for 3-4wks (100, 107-109 in Sanchez)
+
*'''Stress:''' minimise handling wherever possible, provide company and toys for stabled horses, encourage good feeding habits of foals.<ref name="Lester">Sanchez, L.C, Lester, G.D, Merritt, A.M (1998) Effect of ranitidine on intragastric pH in clinically normal neonatal foals. ''J Am Vet Med Assoc'', 212:1407-1412.</ref>
Prophylaxis in foals controversial as gastric acidity may be protective against bacterial translocation (Sanchez). It may be beneficial in foals receiving substantial doses of NSAIDs for orthopaedic pain (Sanchez)
+
 
Management: diet, training, exercise, stress (company, toys)
+
Most of these suggestions would be difficult, if not impossible, to achieve for horses in race training, thus prophylactic medication should be considered.<ref name="Orsini">Orsini, J (2000) Tutorial Article Gastric ulceration in the mature horse: a review. ''Equine Vet Educ'', 12(1):24-27.</ref>
Pasture turnout and continuous access to high quality forage especially alfalfa (Sanchez)
+
 
Furthermore, recent information suggests that feeding a diet that contains 0.5 kg of grain per 100 kg bwt no more frequently than 6 h apart can reduce the risk of EGUS (Andrews et al. 2006).
+
====Prophylaxis====
It has been suggested that a high-grain, low-hay diet would increase the incidence of ulcers (Hammond et al. 1986).
+
'''Omeprazole paste''' at a lower dose daily for 3-4 weeks.<ref name="McClure">McClure, S.R, White, G.W, Sifferman, R.L, ''et al.'' (2005) Efficacy of omeprazole paste for prevention of recurrence of gastric ulcers in horses in race training.  ''J Am Vet Med Assoc'', 226:1685-1688.</ref>
In another study, alfalfa hay was shown to protect horses against EGUS, by increasing stomach pH. Gastric juice pH and ulcer scores were lower in horses fed a diet containing alfalfa hay compared to the same horses fed dietary brome or costal Bermuda hay (Nadeau et al. 2000; Lybbert et al. 2007). The authors concluded that alfalfa hay may be useful in addition to antiulcer treatment for prevention and treatment of squamous gastric ulcers.(Nadeau 2009)
+
*Prevented ulcers in horses maintained under ulcerogenic conditions.<ref name="McClure">McClure, S.R, White, G.W, Sifferman, R.L, ''et al.'' (2005) Efficacy of omeprazole paste for prevention of recurrence of gastric ulcers in horses in race training.  ''J Am Vet Med Assoc'', 226:1685-1688.</ref><ref>McClure, S.R, White, G.W, Sifferman, R.L, ''et al.'' (2005) Efficacy of omeprazole paste for prevention of gastric ulcers in horses in race training.  ''J Am Vet Med Assoc'', 226:1681-1684.</ref><ref>White, G.W, McClure, S.R, Sifferman, R.L, Bernard, W, Doucet, M, Vrins, A, Hughes, F, Holste, J.E, ALva, R, Fleishman, C, Cramer, L (2003) Prevention of occurrence and recurrence of gastric ulcers in horses by treatment with omeprazole at 1mg/kg/day.  ''Proc Am Ass Equine Practnrs'', 49: 220-221.</ref><ref>White, G.W, McClure, S.R, Sifferman, R.L, Holste, J.E, Fleishman, C, Murray, M.J, Cramer, L.G (2007) Effects of short-term light to heavy exercise on gastric ulcer development in horses and efficacy of omeprazole paste in preventing gastric ulceration.  ''J Am Vet Med Ass'', 230:1680-1682.</ref>
 +
 
 +
*Treating ulcers in asymptomatic performance horses may lead to improved performance.<ref name="Orsini">Orsini, J (2000) Tutorial Article Gastric ulceration in the mature horse: a review. ''Equine Vet Educ'', 12(1):24-27.</ref>
 +
*Prophylaxis in critically ill foals may not be necessary and is controversial since gastric acidity may be protective against bacterial translocation.<ref name="Sanchez">Sanchez, L.C (2010) 'Diseases Of The Stomach' in Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>
 +
*May benefit foals receiving substantial doses of NSAIDs for orthopaedic pain.<ref name="Sanchez">Sanchez, L.C (2010) 'Diseases Of The Stomach' in  Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) '''Equine Internal Medicine''' (Third Edition), Saunders, Chapter 15.</ref>
 +
 
 +
{{Learning
 +
|literature search = [http://www.cabdirect.org/search.html?q=%28title%3A%28gastr*%29+OR+title%3A%28stomach%29%29+AND+title%3A%28ulcer*%29+AND+od%3A%28horses%29 Gastric Ulceration in Horses publications]
 +
}}
  
 
==References==
 
==References==
Line 229: Line 242:
  
  
[[Gastric Ulceration - all species]]
+
{{review}}
* Affects the pars oesophagea (margo plicatus) in adults and foals.
 
* Due to '''parasites''' - [[Gasterophilus spp.|''Gasterophilus'' (Bots)]].
 
* Bots are not as common as they once were.
 
* Look like big pink maggots.
 
* Killed by Ivermectin. 
 
* ''Gasterophilus'' leave large ulcers in glandular regions of the [[Forestomach - Anatomy & Physiology|stomach]].
 
** Ulcers / erosions are quite deep.
 
* The parasites are believed to be non-pathogenic, but in large numbers they probably produce some discomfort and poor growth.
 
* Carcinoma can also produce ulceration in the [[Forestomach - Anatomy & Physiology|stomach]] of the horse as, in other species.
 
 
 
* In foals, the glandular area may sometimes be affected.
 
** This may be e.g. stress-related, or due to used of NSAIDs.
 
  
 +
{{OpenPages}}
  
 +
[[Category:Colic - Gastric Causes]]
 +
[[Category:Gastric_Ulceration]]
  
[[Category:Gastric_Ulceration]]
+
[[Category:Stomach Diseases - Horse]]
[[Category:To_Do_-_Nina]]
+
[[Category:Expert_Review]]
[[Category:Alimentary_Disorders_-_Horse]]
+
[[Category:Medical Colic in the Horse]]
[[Category:Alimentary_Disorders_-_Horse]][[Category:Gastric_Ulceration]]
 

Latest revision as of 15:59, 6 July 2012


Also known as: Gastroduodenal ulceration — Gastrointestinal ulceration — Equine Gastric Ulcer Syndrome — EGUS — Peptic ulcer disease — Equine Gastric Ulcer

Introduction

The term 'Equine gastric ulcer syndrome (EGUS)' encompasses a number of disease complexes[1] associated with ulceration of the oesophageal, gastric or duodenal mucosa[2] in horses. When such damage is caused by acidic gastric juice, the defect is described as a 'peptic ulcer'.[2] The non-glandular (squamous, proximal or orad) region of the equine stomach is lined by stratified squamous mucosa and a glandular mucosa lines the distal (aborad) portion. Ulceration of either, or both[3] regions of the gastric mucosa is one of the most important problems of the equine stomach as it may limit performance[4] and compromise welfare.[5] The two regions meet abruptly at the margo plicatus[6], adjacent to where most ulcers occur.[2] Damage to these regions occurs via differing pathophysiological routes and varies in severity. Inflammation can progress to cellular death and sloughing causing disruption of the superficial mucosa (erosion), then penetration of the submucosa down to the level of the lamina propria[2](ulceration), full thickness ulceration (perforation)[6] and potentially duodenal stricture.[7] The occult nature of the disease typically precludes the observation of clinical signs until severe ulceration has developed.[2]

See also:Gastric Ulceration - all speciesColic, Gastric Causes

Prevalence

The prevalence of equine gastric ulceration has increased over the last century.[8] In a retrospective study of 3715 Swedish horses, ulcers were most often found in the squamous mucosa along the margo plicatus, then the glandular body, proximal squamous mucosa and antrum.[8] For the squamous region, reported prevalences are:

  • Racehorses 66-93%[9][10][11]
  • Racehorses in active race training 80-93% (incidence 100%)[12][13]
  • Show horses 58%[14]
  • Ponies 78%[15]
  • Endurance horses 67%[16]
  • Western performance horses 40%[17]
  • Thoroughbred broodmares (67-77%)[18]
  • Nonracing performance horses (17% pre-competition, 56% post-competition)[19]
  • Pleasure horses in full work ~ 60%[4]
  • Foals ~25-57%[20][21][22]

The prevalence and severity of ulcers increases with work intensity[7] and duration[23][24], thus racehorses in active training are more often affected[9] and in half of these, the lesions are moderate to severe.[7] In one study, all horses developed gastric ulcers within 2 weeks of entering simulated race training.[12] Lesions are thought to be chronically progressive during race training, but to regress during retirement.[9] Horses with signs of gastrointestinal distress also demonstrate an increased frequency and severity of ulcerative lesions.[2]EGUS prevalence is high in horses with bowel, liver and oesophageal lesions[8] and in foals, the incidence increases dramatically in those with gastrointestinal signs.[2] Among show horses, 82% of those with signs of abdominal discomfort had gastric ulcers[25] but around 30% of adult horses and many foals have mild gastric erosions which heal without treatment or clinical signs.[7] In 201 clinically normal horses in Denmark, 53% had EGUS with severity score >2 and older horses were more likely to have lesions in both regions of the stomach[26]

Signalment

EGUS develops in horses of all ages[6] but is most common in young horses in training and foals. Gastric ulceration is considered to be rare in horses at pasture.[27]

Pathophysiology

Anatomy

Margo Plicatus.jpg

In the horse, the squamous mucosa covers the lining of the oesophagus and about one third of the gastric wall. It provides a protective barrier comprising a tightly bound superifcial layer of cornified cells.[2] This squamous epithelium has no absorptive or secretory function. The glandular region of the stomach contains mucus-secreting cells and gastric glands. The margo plicatus is analagous to the gastro-oesophageal junction in man, however it lacks the lower oesophageal sphincter that helps to prevent acidic injury of the squamous mucosa.[6] The predilection sites for lesions in various groups are:

  • Neonatal foals: glandular mucosa
  • Healthy suckling foals younger than 50 days: squamous mucosa adjacent to margo plicatus along the greater curvature, squamous epithelial desquamation
  • Suckling foals older than 50 days with clinical signs: squamous mucosa along lesser curvature, squamous mucosa of fundus and adjacent to margo plicatus.
  • Sucklings and early weanlings: gastroduodenal ulcer disease (GDUD) – lesions in proximal duodenum, also severe lesions in squamous or glandular region
  • Yearlings and adults: squamous epithelium, particularly adjacent to margo plicatus, glandular and antral involvement becoming more common,[28][29] severe cases of ulceration can extend dorsally into squamous fundus.[6]


Intrinsic protective factors

Glandular mucosal defence mechanisms[2]
  • Mucus: secreted by specialised mucous neck cells. This viscous, hydrophobic glycoproteinaceous gel adheres to the mucosa and resists acid and pepsin contact. Also acts as a lubricant to minimise mechanical damage.
  • Bicarbonate: secreted by gastric mucosal cells. Secretion triggered by luminal acid concentrations, mechanical irritation, and release of endogenous prostaglandins. Bicarbonate trapped in the mucous layer creates a pH gradient from physiological pH at the mucosal surface to a gastric acid pH at the luminal interface.
  • Epidermal growth factors: found in salivary gland secretions, promote DNA synthesis and proliferation of gastric mucosal cells. Also important in prostaglandin synthesis and inhibit hydrochloric acid (HCl) secretion by the parietal glands.
  • Epithelial restitution mechanisms: important for gastric mucosal integrity. Epithelial injury induces migration of adjacent cells to replace damaged cells within minutes without the need of new cell proliferation. Shear forces, induced by mixing of ingesta, are counterbalanced by epithelial restoration.
  • Adequate mucosal blood supply: required to provide the mucosa with oxygen and nutrients to produce the mucus-bicarbonate layer and to support rapid turnover of epithelial cells. Also required to remove acid that has diffused into the mucosa. Compromised mucosal perfusion may be important in the stress-related ulceration of neonates.[6]
  • Prostaglandins: inhibit acid secretion, promote mucosal perfusion (through vasodilation), increase mucus and bicarbonate secretions and support mucosal cell repair. PGE2 is especially important in these functions.
Squamous mucosal defence mechanisms[2]

The squamous mucosa has comparatively few defence mechansims:

  • Intercellular tight junctions and intracellular buffering systems act as barriers
  • Epidermal growth factor also contributes to the maintenance and repair of gastric squamous epithelium.[30]
Other intrinsic defence mechanisms
  • Gastrodudodenal motility: critically ill neonatal foals can have a substantially different pH profile compared to clinically normal foals, possibly due to changes in gastric motility and acid secretion.[31]

Intrinsic ulcerogenic factors[32]

The most significant factors promoting gastric ulceration are HCl and a gastric pH persistently less than 4.0. Volatile fatty acids (VFAs), lactic acid and bile acids augment the changes in squamous mucosal bioelectrical properties induced by HCl (the first sign of acidic damage). VFAs and lactic acid are by-products of the bacterial fermentation of sugars found in concentrate diets.

  • Hydrochloric acid compromises the outer cell barrier of the squamous epithelium. It then diffuses into the cells of the stratum spinosum, inhibiting cellular sodium transport and causing cell swelling, necrosis and eventual ulceration.[33][34]
  • VFAs: acetic, propionic, butyric and valeric acids are lipid soluble, which enables them to readily diffuse into the stratum spinosum and immediately cause the damage as described above.
  • Lactic acid: has been shown to increase the permeability of the squamous mucosa.[35]

Extrinsic ulcerogenic factors (RISK FACTORS)

  • Exercise: there appears to be a high prevalence of gastric ulcers in horses performing in most disciplines.[36] Although this may be related to exercise, other confounding factors related to these disciplines such as travel, diet, feeding regime, use of non-steroidal anti-inflammatory drugs (NSAIDs) and stress may be significant. However, Vatistas and co-workers (1999) were able to induce and maintain EGUS in racehorses in fast work without the use of NSAIDs or fasting before exercise.[12] There is also evidence that training for just 8 days is suffcient to induce gastric ulcers.[37] The higher prevalence of gastric ulcers at post mortem in racehorses in training compared to those in retirement is consistent with the hypothesis that exercise may be an important risk factor for EGUS.[9] Strenuous exercise is known to stimulate gastrin release which has effects on HCl secretion, gastric emptying and gastric blood flow. Diversion of blood to active muscle groups may further deprive the gastric mucosa of the perfusion required for its integrity. It is also thought that exposure of the squamous mucosa to acid is increased as the stomach is compressed by the abdominal viscera and diaphragm during excercise.[38]
  • Housing and Transport: housing in stables has been proposed as a risk factor for gastric ulcers, with more lesions being found in confined horses compared to those out at grass.[39] However, when comparing solitary stable confinement with stabling next to a companion, and finally turn out in a paddock, Husted and colleagues (2008) found that the environmental situation had no effect on mucosal acid exposure in the equine stomach.[40] Thus the reason for a higher prevalence of EGUS in stabled animals is unclear. Transport has also been shown to induce squamous mucosal ulceration in horses, by as yet, unidentified mechanisms.[41]
  • Diet and feeding regime: feed deprivation encourages gastric ulceration in three ways: (1) it precludes the buffering capacity of protein leading to a reduced gastric pH,[42] (2) it empties the stomach and exposes the squamous mucosa to the more mobile gastric juice[8] and (3) it permits the accumulation of bile salts, which, together with HCl, cause greater squamous mucosal damage than HCl alone.[43] It is unsurprising, therefore, that an alternating feed-fast protocol would produce a consistent model of ulcer induction in the equine squamous mucosa.[44][45] Despite this, feed deprivation is not a prerequisite for gastric ulceration in the horse.[46] Diets that are plentiful in roughage prolong the mastication process and the production of salivary bicarbonate that protects the gastric mucosa. A diet of high grain and low roughage thus predisposes to EGUS.[32] This sort of diet is commonly fed to racehorses but dietary components have also been shown to influence EGUS risk in nonracehorses.[47] Ponies fed a concentrate diet had a greater prevalence of gastric ulcers than ponies fed hay alone[12] and this may be because grain and pelleted feeds are asssociated with increased serum gastrin.[48] High starch meals are also a risk because they are fermented to VFAs and lactic acid and are emptied from the stomach relatively slowly.[49][50][51]
  • Other ailments: conditions that produce abdominal pain and/or inappetance are likely to reduce food intake and predipose to gastric ulcers.[8] This may be the reason that colic and other gastrointestinal disorders (especially those resulting in delayed gastric emptying)[52] have been associated with EGUS.[53] Alternatively, EGUS may be part of a more general gastrointestinal disease complex.[12]
  • NSAIDs: as in other species, NSAIDs have been shown to cause gastric ulcers in horses. Typically this is associated with high doses or frequent administration of phenylbutazone or flunixin meglumine. However, although there is evidence to the contrary,[54]therapeutic doses of NSAIDs may be sufficient to induce EGUS. Other studies have suggested that suxibuzone causes significantly less ulcerogenic effects than phenylbutazone when administered orally[55]and that combination treatment with phenylbutazone and flunixin meglumine may be more risky than phenylbutazone alone.[56] The ulcers produced by NSAIDs are unusual in that they have a predilection for the glandular mucosa,[57][58][59] they may look different endoscopically from ulcers that occur naturally,[60] and they appear to heal spontaneously.[61][62] Despite the well-established link bewteen NSAIDs and ulcers, NSAIDs are rarely responsible for the lesions in horses in race training.[63][64][46]
  • Infective agents: Helicobacter spp. have been held responsible for the initiation and recurrence of human gastric ulcers. Helicobacter equorum has been isolated from equine faecal samples[65] and Helicobacter-like DNA has been found in both foal faeces[66] and the stomachs of mature horses. However, such findings have been demonstrated in horses with and without gastric lesions[67]and in clinically healthy animals. Any link between EGUS and Helicobacter remains weak at best, although there is a suggestion that colonisation of equine gastric ulcers with E.coli may delay their healing.[68]
  • Temperament: a nervous disposition has been linked with gastric ulcers[69]but the same association was not seen in another study.[70]
  • Stress: the physiological and psychological stresses of training, housing, boredom, travel, mixing, hospitalisation and entering new environments[12] may increase the risk of developing EGUS. Stress induced by other clinical disorders (including hypoxia) has been reported to increase the prevalence of EGUS in the glandular mucosa of neonatal foals[71] and a similar mechanism may exist for adult animals.[12]


It is clear that the aetiopathogenesis of EGUS is multifactorial.[72] What remains uncertain, is how these various risk factors interact to produce lesions in different regions of the equine gastric mucosa. Based on extrapolation from other species,[2] it is conceivable that a reduction in mucosal blood flow might result from:

  • hypotensive shock (for example with blood loss, sepsis, endotoxaemia or fluid sequestration in colic)
  • an increase in sympathetic tone (which might be related to physiological or psychological stresses) or
  • other severe disease states (such as disseminated intravascular coagulation).

Furthermore, any impairment of gastric motility (as seen with neurological imbalances, several types of colic and certain drugs) might be expected to increase the risk of ulceration. Despite a lack of clarity, the final common pathway for EGUS appears to be the breaching of mucosal defences by acidic gastric contents. Since horses secrete gastric HCl continuously, even in the fasted state,[73] they are especially vulnerable to acid-associated damage.

Clinical syndrome

The clinical signs associated with gastric ulcers are often very non-sepcific, difficult to document and at times only subjective.[74] In addition, there appears to be a poor correlation between the severity of endoscopic lesions and the clinical presentation.[75] The significance of gastric ulceration in horses thus remains questionable. However, there have been instances where ulcer treatment has preceded an improvement in clinical status and/or racing perfomance, suggesting that in some horses, ulcers are a considerable burden.[74] Cases of gastric ulceration are often asymptomatic, but signs that have been attributed to these lesions in mature horses include:

  • Poor appetite (particularly decreased consumption of concentrates)[6]
  • Poor condition
  • Rough hair coat
  • Weight loss
  • Excessive recumbency[2]
  • Mild to severe colic
    • Mild, recurrent colic signs post-prandially[76]
    • In one study, 49% of horses that presented for colic had gastric ulceration and those with duodenitis-proximal jejunitis had a trend towards a higher prevalence of gastric ulceration compared to those with other GI lesions.[77]
  • Changes in attitude (dullness or depression)[74]
  • Poor racing performance and reluctance to train
    • Performance improved in 4 Thoroughbred racehorses after antiulcer treatment[78]
    • Gastric ulcers have adversely affected physiological indices of performance in horses.[79]


Clinical signs in foals vary depending on age and severity:

  • Neonatal foals: many ulcers are silent, some foals only exhibit signs when ulceration has become severe. Glandular ulcers are considered the most significant[6].
    • Poor appetite
    • Diarrhoea
    • Intermittent colic
    • Frequent dorsal recumbency
  • Sucklings and weanlings:[6]
    • Diarrhoea
    • Poor appetite (off suck or partially off suck)
    • Poor growth, failure to thrive
    • Poor body condition
    • Rough hair coat
    • Potbelly appearance
    • Bruxism (almost pathognomonic)
    • Colic after feeding or tubing
    • Chewing straw
    • Dorsal recumbency
  • Signs of gastroduodenal ulcer disease (GDUD):[6]
    • Bruxism
    • Colic
    • Gastrooesophageal reflux after suckling
    • Ptyalism (secondary to gastric outflow obstruction and gastroesophageal reflux)[7]
    • Diarrhoea

In foals with outflow obstruction distal to the common bile duct, marked reflux may be seen even with limited nursing.[6] Brown gastric fluid may signify bleeding ulcers or necrotizing enterocolitis. GDUD is the primary differential for ptyalism in foals, other possible diagnoses include oesophageal obstruction and Candida infection.[7]

Diagnosis

A presumptive diagnosis can be based on clinical signs and response to therapy,[6] however, a definitive diagnosis requires visualisation of the stomach. This can be achieved in the live horse using endsocopy or, alternatively, at post-mortem.[32]

EGUS was recently discussed at the 2010 Annual meeting between the Equine Insurers Forum (EIF) and the British Equine Veterinary Association (BEVA). The EIF maintained that in order to support claims for the long term costs associated with treatment of EGUS, there would be a requirement for veterinary surgeons to make a definitive diagnosis prior to prescribing omeprazole.

Endoscopy

Oesophagogastroscopy or duodenoscopy can be performed under mild sedation (e.g. 0.6-0.8mg/kg xylazine[74]) in the standing horse. Of these, duodenoscopy is the more specific but more technically demanding method.[6] Endoscopic examination requires preparatory starving of the patient for 6-8hours,[74] eliciting a certain degree of stress. As such, it is preferable not to carry out this technique in foals. Should endoscopy be necessary, any air introduced into the foal's stomach must be evacuated at the end of the procedure to avoid exacerbation of colic.[6] In adult horses, a minimum endoscope length of two metres is essential to visualize the gastric body and fundus.[6] A 2.8-3.0 metre endoscope is needed to observe the gastric antrum, pylorus and proximal dudoenum.[6] In either case, fibreoptic or videoendoscopic equipment can be used.[2] Based on a consensus, the Equine Gastric Ulcer Council (EGUC) published an EGUS Lesion Scoring System which they claimed to be simple and applicable to both regions of the equine gastric mucosa.[2] This last point has been debated, since most of the acquired data on gastric lesions refers only to the squamous mucosa.[1] At the time of writing however, the EGUC system appears to be widely used in practice:

Lesion Grade Description
Grade 0 Intact epithelium with no appearance of hyperaemia (reddening) or hyperkeratosis (yellowing of the squamous mucosa)
Grade 1 Intact mucosa with areas of reddening or hyperkeratosis (squamous)
Grade 2 Small single or multifocal lesions
Grade 3 Large single or multifocal lesions or extensive superficial lesions
Grade 4 Extensive lesions with areas of deep ulceration

Diffuse inflammation may be the only lesion observed in foals with early GDUD.[6] In contrast to other scoring systems,[80] the EGUC approach does not include bleeding when assigning lesion grades. The justification is that the 'snapshot' provided by endoscopy may by chance identify bleeding of superficial erosions whilst missing the intermittent haemorrhage of more severe lesions.[2] Endoscopy may assist in understanding the severity of the disease and assessing the therapeutic response, but it is not without disadvantages. Ulcer severity may be underestimated, particularly in the squamous region and glandular ulcers may be missed altogether.[81] Lesions that appear grossly similar may have different grades on histopathology.[32] This is important because varying lesions may have different causes, requiring a range of treatment approaches.

Other Imaging

In older foals with GDUD, detection of gastric outflow obstruction via abdominal radiography is essential to treatment and prognosis.[6] Liquid barium will demonstrate very delayed or no outflow depending on the degree of obstruction. Without contrast medium, a large, gas filled stomach will be obvious.[6] The need to perform contrast radiography must be weighed against the stress it would place upon the foal. If gastric rupture is suspected, abdominal ultrasound can be used to identify free fluid in the abdomen and abdominocentesis may confirm the diagnosis.[6]

Biopsy

A transendoscopic gastric biopsy technique was recently validated for obtaining samples from the gastric glandular mucosa in the live horse.[82]Unfortunately this technique failed to produce samples of squamous mucosa that would be suitable for histopathological analysis.

Flow chart depicting the proposed pathogenesis of ulcerative lesions of the equine squamous gastric mucosa. Created by Nina Rzechorzek, July 2010. Information sourced from Martineau et al., 2009[83]

Laboratory tests

Currently, useful and reliable markers for EGUS are lacking.[2] The SUCCEED® Equine Fecal Blood Test™ uses specific equine monoclonal antibodies to albumin and haemoglobin to detect occult blood in faeces.[84][85]The test has a positive predictive value of 77% and a negative predictive value of 72% and thus cannot be relied upon alone to diagnose EGUS.[32] False positive results may arise from rectal trauma (e.g. recent biopsy or rectal examination) or protein losing enteropathy.[32] Other tests that require further analysis for sensitivity and specificity[6] include:

  • Urine[86] and blood[87] sucrose absorption as an assay of gastric mucosal permeability
  • Serum alpha1-antitrypsin may be released from damaged gastric tissue[32] and has been detected more frequently in foals with gastric ulceration[88]

Pathology

Martineau and co-workers (2009) demonstrated that in a mixed population of horses, a wide range of lesions associated with EGUS could be found at post mortem.[5] These included hyperkeratosis, punctate scars, diffuse erosions or ulcerations and margo injuria in the squamous region and hyperaemia, focal erosions and ulcerations in the glandular region. A novel finding was glandular metaplasia which may be evidence of a protective mechanism developing in response to acid exposure.[5] The authors then devised a pathological scoring system - the Equine Gastritis Grading (EGG) system - which uses 5 samples of gastric mucosa taken from specific regions of the equine stomach. For each of these, the inflammatory infiltrate is graded by type, density and location, reactive changes are classified in both squamous and glandular samples and the presence or absence of infectious agents and lymphoid follicles is noted.[83] From their findings, a pathogenesis for the development of lesions in the squamous region was proposed:

Treatment

Histamine 2 receptor antagonists

Parietal cells secrete HCl upon stimulation of histamine, acetylcholine or gastrin receptors.[2] Competitive H2 receptor antagonists have successfully elevated gastric pH and treated gastric ulcers in mature horses and foals.[89][90] There appears to be a great variability among horses in their dose requirements for H2 antagonists which may be explained by individual bioavailability for these compounds.[2] Currently recommended doses for cimetidine, ranitidine and f amotidine proposed to be effective in the majority of horses have been recommended by Sanchez.[6]

Proton-pump inhibitors (PPIs)

PPIs irreversibly bind to the H+K+-ATPase proton pump of the parietal cell and block the secretion of hydrogen ions. These agents are more effective than H2 antagonsists as their action is receptor-independent,[2] blocking the final pathway of acid secretion and they have a prolonged effect allowing for once-daily dosing.[91] Omeprazole (Gastroguard™), a subsituted benzimidazole, is currently the only PPI licensed for use in horses. At a dose rate of 4mg/kg per day omeprazole has proven effective in reducing the severity of gastric ulcers in Thoroughbred horses in active race training[92] and no adverse effects have been observed. The paste formulation is easy to administer and is generally well accepted by horses. Omeprazole has demonstrated efficacy in the resolution of both naturally-occurring and NSAID-induced gastric ulcers in horses.[93][94] A single dose has also produced an increase in gastric pH in clinically ill neonatal foals[95] and has contributed to ulcer healing in neonates.[93] A potential concern is that altering gastric pH may encourage bacterial overgrowth. Thus further work is needed to evaluate the long-term safety of omeprazole in horses and particularly, foals.[92]

Antacids

The use of antacids to treat EGUS in the horse has not been critically evaluated[6] and some believe they are contraindicated due to potential rebound effects. Furthermore, the requirement for frequent dosing of large volumes of these products (owing to their poor efficacy) makes them an unattractive, stressful and impractical alternative to omeprazole.[74]

Mucosal protectants

Sucralfate is a complex salt of sucrose and aluminium hydroxide. It is thought to promote ulcer healing via several mechanisms: adherence to ulcerated mucosa, stimulation of mucus secretion, pepsin inibition, increasing PGE synthesis and enhancing the local production of epidermal growth factor.[6] It has been used effectively to treat and prevent stress-induced ulcers in man and has been recommended for the treatment of glandular ulcers in horses.[96] However, the effect of sucralfate on equine squamous gastric ulcers remains inconclusive[2] and the product may be ineffective in the alkaline conditions created by acid suppression agents.[97]

Prostaglandin analogues

Synthetic PGE1 analogues are believed to inihibit gastric acid secretion and enhance mucosal cytoprotection.[98] Misoprostol has been an effective agent in the treatment of human gastric and duodenal ulcers and has been shown to increase gastric pH in horses.[99] Although contraindicated in pregnant mares, Misoprostol may be beneficial for mucosal recovery in the face of flunixin treatment.[100]

Gastric prokinetics

In cases of gastrooesophageal reflux, duodenal disease and delayed gastric emptying without a serious physical obstruction to gastric outflow, gastric prokinetics might be considered.[6] Such compounds include bethanechol, metaclopramide, erythromycin and cisapride which have been shown to hasten gastric empyting in adult horses.[2] To date only the parasympathomimetic agent bethanechol has been used as an adjunct for EGUS and cholinergic side effects are possible. Cisapride has been withdrawn from the US and UK markets over concern about its potential to cause adverse cardiac effects in man.[6]

Treatment problems

The prevalence of gastric ulcers in horses remains high regardless of the common use of antiulcer treatments. This has been attributed to the expense of recommended products encouraging subtherapeutic and curtailed dosing schedules.[101] Omeprazole and ranitidine must be administered for at least 28 days for adequate ulcer healing.[32] In the USA, compounded omeprazole from bulk powders are used as a cheaper substitute for the FDA approved products. However, these formulations lack efficacy and are not regulated.[102] A considerable challenge lies in the management of abdominal pain associated with EGUS, since the commonly used NSAIDs for pain control may worsen and even induce further ulcerative lesions.[103] Another challenge is the horse in which oral medication is prohibited. However, Andrews and colleagues (2006) have demonstrated the efficacy of an omeprazole powder, adminstered IV in sterile water, which signifcantly increases the pH of equine gastric contents and may be useful in problem horses.[104] An ongoing point of debate is the use of antiulcer medication in competition horses. In 2000, the Bureau of The Fèdèration Equestre Internationale (FEI) permitted the use of cimetidine, ranitidine and omeprazole to prevent and treat gastric ulcers. This decision was based on evidence that the compounds were not performance enhancing and that EGUS was such a widespread concern. However, these drugs are still listed under prohibited substances in the 2009 Appendices of the American Endurance Ride Conference (AERC) Rules and Regulations. The argument is that a horse requiring such treatment is not suffciently well to compete and should be withdrawn from competition if it needs preventative medication. A related concern is that the AERC permits the use of hyperosmolar oral electrolyte pastes which may cause gastric ulcers.[105] Without the protection afforded by antiulcer agents, these horses may be at considerable risk for EGUS.[32]

Prognosis

Improvement in most clinical signs should be noted within 1-3 weeks of commencing treatment. Colic or diarrhoea should resolve within 48 hours.[6] Complications related to gastric ulcers are most frequent and severe in foals with GDUD. They include gastric or duodneal perforation, delayed gastric emptying, gastroesophageal reflux and oesophagitis, ascending cholangitis and megaoesophagus or aspiration pneumonia[106] secondary to chronic gastroesophageal reflux. Sudden gastric perforation without prior signs occurs sporadically in foals.[7]Ulcers in the proximal duodenum or at the pylorus can cause fibrosis and stricture. The latter complication is seen in both foals and adult horses.[7] In mature animals, the most common complication is the recurrence of EGUS after treatment has ceased. This is typically because the inciting managemental causes have not been altered.

Prevention

Management

  • Diet: ideally turnout to good quality grass. Stabled horses should have continuous access to hay and should be offered this before calorific needs are met by concentrates.[74] Alfalfa, or another high calcium or high protein forage may be preventative by increasing gastric pH.[107][108] Concentrates should be fed at no more than 0.5kg per 100kg body weight and not more frequently than every 6 hours.[104] Horses prone to, or at risk of, EGUS should be fed the minimum amount of concentrates necessary.[32]
  • Stress: minimise handling wherever possible, provide company and toys for stabled horses, encourage good feeding habits of foals.[89]

Most of these suggestions would be difficult, if not impossible, to achieve for horses in race training, thus prophylactic medication should be considered.[74]

Prophylaxis

Omeprazole paste at a lower dose daily for 3-4 weeks.[109]

  • Treating ulcers in asymptomatic performance horses may lead to improved performance.[74]
  • Prophylaxis in critically ill foals may not be necessary and is controversial since gastric acidity may be protective against bacterial translocation.[6]
  • May benefit foals receiving substantial doses of NSAIDs for orthopaedic pain.[6]


Gastric Ulceration - Horse Learning Resources
CABICABI logo.jpg
Literature Search
Search for recent publications via CAB Abstract
(CABI log in required)
Gastric Ulceration in Horses publications


References

  1. 1.0 1.1 Merritt, A M (2009) Appeal for proper usage of the term ʻEGUSʼ: Equine gastric ulcer syndrome. Equine Vet J, 41(7):616.
  2. 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 The Equine Gastric Ulcer Council (1999) Tutorial Article: Recommendations for the diagnosis and treatment of equine gastric ulcer syndrome (EGUS). Equine Vet Educ, 11(5):262-272.
  3. Andrews, F.M, Bernard, W.V, Byars, T.D et al. (1999) Recommendations for the diagnosis and treatment of equine gastric ulcer syndrome (EGUS). Equine Vet Educ, 1:122-134. In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) Equine Internal Medicine (Third Edition), Saunders, Chapter 15.
  4. 4.0 4.1 Bell, R.J, Mogg, T, Kingston, J.K (2007) Equine gastric ulcer syndrome in adult horses: a review. N Z Vet J, 55(1):1-12).
  5. 5.0 5.1 5.2 Martineau, H, Thompson, H, Taylor, D (2009) Pathology of gastritis and gastric ulceration in the horse. Part 1: Range of lesions present in 21 mature individuals. Equine Vet J, 41(7):638-644. Cite error: Invalid <ref> tag; name "Martineau" defined multiple times with different content Cite error: Invalid <ref> tag; name "Martineau" defined multiple times with different content
  6. 6.00 6.01 6.02 6.03 6.04 6.05 6.06 6.07 6.08 6.09 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.19 6.20 6.21 6.22 6.23 6.24 6.25 6.26 6.27 6.28 Sanchez, L.C (2010) 'Diseases Of The Stomach' in Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) Equine Internal Medicine (Third Edition), Saunders, Chapter 15. Cite error: Invalid <ref> tag; name "Sanchez" defined multiple times with different content Cite error: Invalid <ref> tag; name "Sanchez" defined multiple times with different content Cite error: Invalid <ref> tag; name "Sanchez" defined multiple times with different content Cite error: Invalid <ref> tag; name "Sanchez" defined multiple times with different content Cite error: Invalid <ref> tag; name "Sanchez" defined multiple times with different content Cite error: Invalid <ref> tag; name "Sanchez" defined multiple times with different content Cite error: Invalid <ref> tag; name "Sanchez" defined multiple times with different content Cite error: Invalid <ref> tag; name "Sanchez" defined multiple times with different content Cite error: Invalid <ref> tag; name "Sanchez" defined multiple times with different content Cite error: Invalid <ref> tag; name "Sanchez" defined multiple times with different content Cite error: Invalid <ref> tag; name "Sanchez" defined multiple times with different content Cite error: Invalid <ref> tag; name "Sanchez" defined multiple times with different content Cite error: Invalid <ref> tag; name "Sanchez" defined multiple times with different content Cite error: Invalid <ref> tag; name "Sanchez" defined multiple times with different content Cite error: Invalid <ref> tag; name "Sanchez" defined multiple times with different content Cite error: Invalid <ref> tag; name "Sanchez" defined multiple times with different content Cite error: Invalid <ref> tag; name "Sanchez" defined multiple times with different content Cite error: Invalid <ref> tag; name "Sanchez" defined multiple times with different content Cite error: Invalid <ref> tag; name "Sanchez" defined multiple times with different content Cite error: Invalid <ref> tag; name "Sanchez" defined multiple times with different content Cite error: Invalid <ref> tag; name "Sanchez" defined multiple times with different content Cite error: Invalid <ref> tag; name "Sanchez" defined multiple times with different content Cite error: Invalid <ref> tag; name "Sanchez" defined multiple times with different content Cite error: Invalid <ref> tag; name "Sanchez" defined multiple times with different content Cite error: Invalid <ref> tag; name "Sanchez" defined multiple times with different content Cite error: Invalid <ref> tag; name "Sanchez" defined multiple times with different content
  7. 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 Merck & Co (2008) The Merck Veterinary Manual (Eighth Edition), Merial
  8. 8.0 8.1 8.2 8.3 8.4 Sandin, A, Skidell, J, Haggstrom, J, Nilsson, G (2000) Postmortem findings of gastric ulcers in Swedish horses older than age one year: a retrospective study of 3715 horses (1924–1996). Equine Vet J, 32(1):36-42.
  9. 9.0 9.1 9.2 9.3 Hammond, C.J, Mason, D.K, Watkins, K.L (1986) Gastric ulceration in mature Thoroughbred horses. Equine Vet J, 18(4):284-287.
  10. Vatistas, N.J, Snyder, J.R, Carlson, G, et al (1994) Epidemiological study of gastric ulceration in the thoroughbred racehorse:202 horses 1992-1993. Proc Am Assoc Equine Pract, 40:125-126
  11. Murray, M.J, Schusser, G.F, Pipers, F.S, Gross, S.J (1996) Factors associated with gastric lesions in thoroughbred racehorses. Equine Vet J, 28:368-374.
  12. 12.0 12.1 12.2 12.3 12.4 12.5 12.6 Vatistas, N.J, Sifferman, R.L, Holste, J, Cox, J.L, Pinalto, G, Schultz, K.T (1999) Induction and maintenance of gastric ulceration in horses in simulated race training. Equine Vet J Suppl, 29:40-44 Cite error: Invalid <ref> tag; name "Vatistas 2" defined multiple times with different content
  13. Vatistas, N.J, Snyder, J.R, Carlson, G, Johnson, B, Arthruy, R.M, Thurmond, M, Zhou, H, Lloyd, K.L.K (1999) Cross-sectional study of gastric ulcers of the squamous mucosa in Thoroughbred racehorses. Equine Vet J, Suppl 29:34-39.
  14. McClure, S.R, Glickman, L.T, Glickman, N.W (1999) Prevalence of gastric ulcers in show horses. J Am Vet Med Assoc, 215:1130-1133.
  15. MacAllister, C.G, Sangiah, S, Mauromoustakos, A (1992) Effect of a histamine H, type receptor antagonist (WY 45, 727) on the healing of gastric ulcers in ponies. J Vet Int Med, 6:271-275.
  16. Nieto, J.E, Snyder, J.R, Beldomenico, P et al. (2004) Prevalence of gastric ulcers in endurance horses: a preliminary report. Vet J, 167:33-37.
  17. Bertone, J (2000) Prevalence of gastric ulcers in elite, heavy use western performance horses. Proc Am Assoc Equine Pract, 46:256-259.
  18. LeJeune, S.S, Nieto, J.E, Dechant, J.E, Snyder, J.R (2009) Prevalence of gastric ulcers in Thoroughbred broodmares in pasture: a preliminary report. Vet J, 181(3):251-5.
  19. Hartmann, A.M, Frankeny, R.L (2003) A preliminary investigation into the association between competition and gastric ulcer formation in non-racing performance horses. J Equine Vet Sci, 23:560-561. In:Sanchez, L.C (2010) 'Diseases Of The Stomach' in Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) Equine Internal Medicine (Third Edition), Saunders, Chapter 15.
  20. Wilson, J.H (1986) Gastric and duodenal ulcers in foals: a retrospective study. Proc Equine Colic Res Symp 2nd:126-128.
  21. Murray, M.J, Grodinsky, C, Cowles, R.R, et al.(1990) Endoscopic evaluation of changes in gastric lesions of Thoroughbred foals. J Am Vet Med Assoc, 196:1623-1627.
  22. Murray, M.J (1989) Endoscopic appearance of gastric lesions in foals: 94 cases (1987-1988). J Am Vet Med Assoc, 195:1135-1141.
  23. Orsini, J.A, Pipers, F.S (1997) Endoscopic evaluation of the relationship between training, racing, and gastric ulcers. Vet Surg, 26:424. In: Orsini, J (2000) Tutorial Article Gastric ulceration in the mature horse: a review. Equine Vet Educ, 12(1):24-27.
  24. Murray, M.J (1994) Gastric ulcers in adult horses. Comp Cont Educ Pract Vet, 16:792-794. In:Orsini, J (2000) Tutorial Article Gastric ulceration in the mature horse: a review. Equine Vet Educ, 12(1):24-27.
  25. Murray, M. (1992) Gastric ulceration in horses: 91 cases (1987-1990). J Am Vet Med Assoc, 201:117-120. In: Martineau, H, Thompson, H, Taylor, D (2009) Pathology of gastritis and gastric ulceration in the horse. Part 1: Range of lesions present in 21 mature individuals. Equine Vet J, 41(7):638-644.
  26. Luthersson, N, Nielsen, K.H, Harris, P, Parkin, T.D (2009) The prevalence and anatomical distribution of equine gastric ulcer syndrome (EGUS) in 201 horses in Denmark. Equine Vet J, 41(7):619-24.
  27. Murray, M.J (1994) Characteristics of gastric ulcer pathophysiology. Proc Am Coll Vet Intern Med, 12:610-612. In: Sandin, A, Skidell, J, Haggstrom, J, Nilsson, G (2000) Postmortem findings of gastric ulcers in Swedish horses older than age one year: a retrospective study of 3715 horses (1924–1996). Equine Vet J, 32(1):36-42.
  28. Bell, R.J.W, Kingston, J.K, Mogg, T.D, Perkins, N.R (2007) The prevalence of gastric ulceration in racehorses in New Zealand. N Z Vet J, 55:13-18. In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) Equine Internal Medicine (Third Edition), Saunders, Chapter 15.
  29. Murray, M.J, Nout, Y.S, Ward, D.L (2001) Endoscopic findings of the gastric antrum and pylorus in horses: 162 cases (1996-2000). J Vet Intern Med, 15:401-406. In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) Equine Internal Medicine (Third Edition), Saunders, Chapter 15.
  30. Jeffrery, S.C, Murray, M.J, Eichorn, E.S (2001) Distribution of epidermal growth factor receptor (EGFr) in normal and acute peptic-injured equine gastric squaous epithelium. Equine Vet J, 33:562-569. In: Martineau, H, Thompson, H, Taylor, D (2009) Pathology of gastritis and gastric ulceration in the horse. Part 1: range of lesions present in 21 mature individuals. Equine Vet J, 41(7):638-644.
  31. Sanchez, L.C, Lester, G.D, Merritt, A.M (2001) Intragastric pH in critically ill neonatal foals and the effect of ranitidine. J Am Vet Med Assoc, 218:907-911. In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) Equine Internal Medicine (Third Edition), Saunders, Chapter 15.
  32. 32.0 32.1 32.2 32.3 32.4 32.5 32.6 32.7 32.8 32.9 Nadeau, J.A, Andrews, F.M (2009) Science: Overviews Equine gastric ulcer syndrome: The continuing conundrum. Equine Vet J, 41(7):611-615. Cite error: Invalid <ref> tag; name "Nadeau" defined multiple times with different content Cite error: Invalid <ref> tag; name "Nadeau" defined multiple times with different content Cite error: Invalid <ref> tag; name "Nadeau" defined multiple times with different content Cite error: Invalid <ref> tag; name "Nadeau" defined multiple times with different content Cite error: Invalid <ref> tag; name "Nadeau" defined multiple times with different content Cite error: Invalid <ref> tag; name "Nadeau" defined multiple times with different content Cite error: Invalid <ref> tag; name "Nadeau" defined multiple times with different content Cite error: Invalid <ref> tag; name "Nadeau" defined multiple times with different content Cite error: Invalid <ref> tag; name "Nadeau" defined multiple times with different content
  33. Nadeau, J.A, Andrews, F.M, Patton, C.S, Argenzio, R.A, Mathew, A.G, Saxton, A.M (2003) Effects of hydrochloric, acetic, butyric, and proprionic acids on pathogenesis of ulcers in the nonglandular portion of the stomach of horses. Am J Vet Res,64:404-412.
  34. Nadeau, J.A, Andrews, F.M, Patton, C.S, Argenzio, R.A, Mathew, A.G, Saxton, A.M (2003) Effects of hydrochloric, valeric, and other volatile fatty acids on pathogenesis of ulcers in the nonglandular portion of the stomach of horses. Am J Vet Res, 64:413-417.
  35. Andrews, F.M, Buchanan, B.R, Elliott, S.B, Al Jassim, R.A.M, McGowan, C.M, Saxton, A.M (2008) In vitro effects of hydrochloric and lactic acids on bioelectric properties of equine gastric squamous mucosa. Equine Vet J, 40:301-305.
  36. Hartmann, A.M, Frankeny, R.L (2003) A preliminary investigation into the association between competition and gastric ulcer formation in non-racing performance horses. J Equine Vet Sci, 23:560-561. In: Nadeau, J.A, Andrews, F.M (2009) Science: Overviews Equine gastric ulcer syndrome: The continuing conundrum. Equine Vet J, 41(7):611-615.
  37. White, G, McClure, S.R, Siifferman, R, Holste, J.E, Fleishman, C, Murray, M.J, Cramer, L.G (2007) Effects of short-term light to heavy exercise on gastric ulcer development in horses and efficacy of omeprazole paste in preventing gastric ulceration. J Am Vet Med Assoc, 230(11):1680-2.
  38. Lorenzo-Figueras, M, Merritt, A.M (2002) Effects of exercise on gastric volume and pH in the proximal portion of the stomach of horses. Am J Vet Res, 63:1481-1487.
  39. Murray, M.J, Eichorn, E.S (1996) Effects of intermittent feed deprivation, intermittent feed deprivation with ranitidine administration, and stall confinement with ad libitum access to hay on gastric ulceration in horses. Am J Vet Res, 57:1599-1603.
  40. Husted, L, Sanchex, L.C, Olsen, S.N, Baptiste, K.E, Merritt, A.M (2008) Effect of paddock vs. stall housing on 24 hour gastric pH within the proximal and ventral equine stomach. Equine Vet J, 40(4):337-41.
  41. McClure, S.R, Carithers, D.S, Gross, S.J, Murray, M.J (2005) Gastric ulcer development in horses in a simulated show or training environment. J Am Vet Med Assoc, 227:775-777.
  42. Murray, M.J, Schusser, G.F (1993) Measurement of 24-h gastric pH using an indwelling pH electrode in horses unfed, fed and treated with ranitidine. Equine Vet J, 25:417-421. In: Sandin, A, Skidell, J, Haggstrom, J, Nilsson, G (2000) Postmortem findings of gastric ulcers in Swedish horses older than age one year: a retrospective study of 3715 horses (1924–1996). Equine Vet J, 32(1):36-42.
  43. Berschneider, H.M, Blikslager, A.T, Roberts, M.C (1999) Role of dudodenal relfux in nonglandular gastric ulcer disease of the mature horse. Equine Vet J Suppl, 29:24-29.
  44. Murray, M.J, Schusser, G.F (1993) Measurement of 24-h gastric pH using an indwelling pH electrode in horses unfed, fed and treated with ranitidine. Equine Vet J, 25:417-421. In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) Equine Internal Medicine (Third Edition), Saunders, Chapter 15.
  45. Murray, M.J (1994) Equine model of inducing ulceration in alimentary squamous epithelial mucosa. Dig Dis Sci, 39:2530-2535. In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) Equine Internal Medicine (Third Edition), Saunders, Chapter 15.
  46. 46.0 46.1 Vatistas, N.J (1998) Gastric Ulceration in the Racing Thoroughbred. PhD Thesis. In: Vatistas, N.J, Sifferman, R.L, Holste, J, Cox, J.L, Pinalto, G, Schultz, K.T (1999) Induction and maintenance of gastric ulceration in horses in simulated race training. Equine Vet J Suppl, 29:40-44
  47. Luthersson, N, Nielson, K.H, Harris, P, Parkin, T.D (2009) Risk factors associated with equine gastric ulceration syndrome (EGUS) in 201 horses in Denmark. Equine Vet J, 41(7):625-30.
  48. Smyth, G.B, Young, D.W, Hammond, L.S (1988) Effects of diet and feeding on post-prandial serum gastrin and insulin concentrations in adult horses. Equine Vet J Suppl 7:56-59.
  49. Mètayer, N, Lhôte, M, Bahr, A, Cohen, N.D, Kim, I, Rousell, A.J, Julliand, V (2004) Meal size and starch content affect gastric emptying in horses. Equine Vet J, 36:434-440. In: Nadeau, J.A, Andrews, F.M (2009) Science: Overviews Equine gastric ulcer syndrome: The continuing conundrum. Equine Vet J, 41(7):611-615.
  50. Taharaguchi, S, Okai, K, Orita, Y, Kuwano, M, Ueno, T, Taniyama, H (2004) Relation between amounts of concentrated feed given mares and gastric ulcers in foals. J Japan Vet Med Ass, 57:366-370. In: Nadeau, J.A, Andrews, F.M (2009) Science: Overviews Equine gastric ulcer syndrome: The continuing conundrum. Equine Vet J, 41(7):611-615.
  51. Boswinkel, A.M, Ellis, A.D, Sloet van Oldruitenborgh-Oosterbaan, M.M (2007) The influence of low versus high fibre haylage diets in combination with training or pasture rest on equine gastric ulceration syndrome (EGUS). Pferdeheilkunde, 23:123-130. In: Nadeau, J.A, Andrews, F.M (2009) Science: Overviews Equine gastric ulcer syndrome: The continuing conundrum. Equine Vet J, 41(7):611-615.
  52. Mertz, H.R, Walsh, J.H, (1991) Peptic ulcer pathophysiology. Med Clin North Am, 75:799-814. In: Sanchez, L.C (2010) 'Diseases of the stomach' in Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) Equine Internal Medicine (Third Edition), Saunders, Chapter 15.
  53. Furr, M.O, Murray, M.J (1989) Treatment of gastric ulcers in horses with histamine type 2 receptor antagonists. Equine Vet J Suppl, 7:77-79.
  54. Andrews, F.M, Reinemeyer, C.R, Longhofer, S.L (2009) Effects of top-dress formulations of suxibuzone and phenylbutazone on development of gastric ulcers in horses. Vet Ther, 10(3):113-20.
  55. Monreal, L, Sabatè, D, Segura, D, Mayós, I, Homedes, J (2004) Lower gastric ulcerogenic effect of suxibuzone compared to phenylbutazone when administered orally to horses. Res Vet Sci, 76:145-149. In: Nadeau, J.A, Andrews, F.M (2009) Science: Overviews Equine gastric ulcer syndrome: The continuing conundrum. Equine Vet J, 41(7):611-615.
  56. Reed, S.K, Messer, N.T, Tessman, R.K, Keegan, K.G (2006) Effects of phenylbutazone alone or in combination with flunixin meglumine on blood protein concentrations in horses. Am J Vet Res, 67:398-402. In: Nadeau, J.A, Andrews, F.M (2009) Science: Overviews Equine gastric ulcer syndrome: The continuing conundrum. Equine Vet J, 41(7):611-615.
  57. MacAllister, C.G, Morgan, S.J, Borne, A.T, Pollet, R.A, (1993) Comparison of adverse effects of phenylbutazone, flunixin meglumine, and ketoprofen in horses. J Am Vet Med Ass, 202:71-77. In: Jonsson, H, Egenvall, A (2006) Prevalence of gastric ulceration in Swedish Standardbreds in race training. Equine Vet J, 38(3):209-213.
  58. Furr, M.O, Murray, M.J (1989) Treatment of gastric ulcers in horses with histamine type 2 receptor antagonists. Equine Vet J Suppl, 7:77-79. In: Vatistas, N.J, Sifferman, R.L, Holste, J, Cox, J.L, Pinalto, G, Schultz, K.T (1999) Induction and maintenance of gastric ulceration in horses in simulated race training. Equine Vet J Suppl, 29:40-44
  59. Kumaran, D, Bhuvanakumar, C.K (1994) Gastro duodenal ulceration in foals - a discussion. Cenfaur Mylapore, 10:83-86. In: Vatistas, N.J, Sifferman, R.L, Holste, J, Cox, J.L, Pinalto, G, Schultz, K.T (1999) Induction and maintenance of gastric ulceration in horses in simulated race training. Equine Vet J Suppl, 29:40-44
  60. Jonsson, H, Egenvall, A (2006) Prevalence of gastric ulceration in Swedish Standardbreds in race training. Equine Vet J, 38(3):209-213.
  61. Jones, W.E (1983) Gastrointestinal ulcers [foal]. Equine Vet Data, 4:305-308. In: Vatistas, N.J, Sifferman, R.L, Holste, J, Cox, J.L, Pinalto, G, Schultz, K.T (1999) Induction and maintenance of gastric ulceration in horses in simulated race training. Equine Vet J Suppl, 29:40-44
  62. MacAllister, C.G, Sangiah, S (1993) Effect of ranitidine (in healing of experimentally induced gastric ulcers in ponies. Am J Vet Res, 54:1103-1107. In: Vatistas, N.J, Sifferman, R.L, Holste, J, Cox, J.L, Pinalto, G, Schultz, K.T (1999) Induction and maintenance of gastric ulceration in horses in simulated race training. Equine Vet J Suppl, 29:40-44
  63. Vatistas N.J, Snyder, J.R, Carlson, G.P, Johnson, B, Arther, R.M, Thurmiind, M, Lloyd, K.C.K (1994) Epidemiology study of gastric ulcerarion in the Thoroughbred race horse: 202 horses. Proc Am Ass Equine Pract, 39:125-126. In: Vatistas, N.J, Sifferman, R.L, Holste, J, Cox, J.L, Pinalto, G, Schultz, K.T (1999) Induction and maintenance of gastric ulceration in horses in simulated race training. Equine Vet J Suppl, 29:40-44
  64. Murray, M.J, Schusser, G.F, Pipers, F.S, Gro:ss, S.J (1996) Factors associated with gastric lesions in Thoroughbred racehorses. Equine Vet J, 28:368-374. In: Vatistas, N.J, Sifferman, R.L, Holste, J, Cox, J.L, Pinalto, G, Schultz, K.T (1999) Induction and maintenance of gastric ulceration in horses in simulated race training. Equine Vet J Suppl, 29:40-44
  65. Fox, J.G (2002) The non-H.pylori helicobacters: their expanding role in gastorintestinal and systemic disease. Gut, 50:273-283. In: Nadeau, J.A, Andrews, F.M (2009) Science: Overviews Equine gastric ulcer syndrome: The continuing conundrum. Equine Vet J, 41(7):611-615.
  66. Moyaert, H, Haesebrouck, F, Dewulf, J, Ducatelle, R, Pasmans, F (2009) Helicobacter equorum is highly prevalent in foals. Vet Microbiol, 133:190-192. In: Nadeau, J.A, Andrews, F.M (2009) Science: Overviews Equine gastric ulcer syndrome: The continuing conundrum. Equine Vet J, 41(7):611-615.
  67. Contreras, M, Morales, A, Garcia-Amado, M.A, DeVera, M, Bermudez, V, Gueneau, P (2007) Detection of Helicobacter-like DNA in the gastric mucosa of Thoroughbred horses. Letters in Appl Microbiol, 45:553-337. In: Nadeau, J.A, Andrews, F.M (2009) Science: Overviews Equine gastric ulcer syndrome: The continuing conundrum. Equine Vet J, 41(7):611-615.
  68. Al Jassim, R.A.M, Scott, P.T, Trebbin, A.L, Trott, D, Pollitt, C.C (2006) The genetic diversity of lactic acid producing bacteria in the equine gastrointestinal tract. FEMS Microbiol Letters, 248:75-81. In: Nadeau, J.A, Andrews, F.M (2009) Science: Overviews Equine gastric ulcer syndrome: The continuing conundrum. Equine Vet J, 41(7):611-615.
  69. McClure, S.R, Glickman, L.T, Glickman, N.W (1999) Prevalence of gastric ulcers in show horses. J Am Vet Med Ass 215:1130-1133. In: In: Jonsson, H, Egenvall, A (2006) Prevalence of gastric ulceration in Swedish Standardbreds in race training. Equine Vet J, 38(3):209-213.
  70. Vatistas, N.J, Snyder, J.R, Carlson, G, Johnson, B, Arthur, R.M, Thurmond, M, Zhou, H, Lloyd, L.K (1999) Cross-sectional study of gastric ulcers of the squamous mucosa in Thoroughbred racehorses. Equine Vet J Suppl, 29:34-39. In: Jonsson, H, Egenvall, A (2006) Prevalence of gastric ulceration in Swedish Standardbreds in race training. Equine Vet J, 38(3):209-213.
  71. Furr, M.O, Murray, M.J, Ferguson, D.C (1992) The effects of stress on gastric ulceration, T3, T4, reverse T3 and cortisol in neonatal foals. Equine Vet J, 24:37-40.
  72. Jonsson, H, Egenvall, A (2006) Prevalence of gastric ulceration in Swedish Standardbreds in race training. Equine Vet J, 38(3):209-213.
  73. Campbell-Thompson, M.L, Merritt, A.M (1987) Effect of ranitidine on gastric acid secretion in young male horses. Am J Vet Res, 48:1511-1515.
  74. 74.0 74.1 74.2 74.3 74.4 74.5 74.6 74.7 74.8 Orsini, J (2000) Tutorial Article Gastric ulceration in the mature horse: a review. Equine Vet Educ, 12(1):24-27.
  75. Murray, M.J, Grodinsky, C, Anderson, C.W, Radue, P.F, Schmidt, G.R (1989) Gastric ulcers in horses: a comparison of endoscopic findings in horses with and without clinical signs. Equine Vet J Suppl, 7:68-72.
  76. Videla, R, Andrews, F.M (2009) New perspectives in equine gastric ulcer syndrome. Vet Clin North Am Equine Pract, 25(2):283-301.
  77. Dukti, S.A, Perkins, S, Murphy, J, Barr, B, Boston, R, Southwood, L.L, Bernard, W (2006) Prevalence of gastric squamous ulceration in horses with abdominal pain. Equine Vet J, 38:347-349.
  78. Franklin, S.H, Brazil, T.J, Allen, K.J (2008) Poor performance associated with equine gastric ulceration syndrome in four Thoroughbred racehorses. Equine Vet Educ, 20:119-124. In: Nadeau, J.A, Andrews, F.M (2009) Science: Overviews Equine gastric ulcer syndrome: The continuing conundrum. Equine Vet J, 41(7):611-615.
  79. Nieto, J.E, Snyder, J.R, Vatistas, N.J, Jones, J.H (2009) Effect of gastric ulceration on physiologic responses to exercise in horses. Am J Vet Res, 70(6):787-95.
  80. MacAllister, C.G, Andrews F.M, Deegan E, Ruoff, W, Olovson, S.G (1997) A scoring system for gastric ulcers in horses. Equine Vet J, 29:430-433.
  81. Andrews, F.M, Reinmeyers, C.R, McCracken, M.D, Blackford, J.T, Nadeau, J.A, Saabye, L, Sotell, M, Saxton, A (2002) Comparison of endoscopic, necropsy and histology scoring of equine gastric ulcers. Equine Vet J,34(5):475-478.
  82. Rodrigues, N.L, Dore, M, Doucet, M.Y (2009) Validation of a transendoscopic glandular and nonglandular gastric biopsy technique in horses. Equine Vet J, 41(7):631-5.
  83. 83.0 83.1 Martineau, H, Thompson, H, Taylor, D (2009) Pathology of gastritis and gastric ulceration in the horse. Part 2: a scoring system. Equine Vet J,41(7):646-51.
  84. Carter, S, Pellegrini, F.A (2006) The use of novel antibody tools to detect the presence of blood in equine feces. Company Bulletin Freedom Health LLC 1-3. In: Nadeau, J.A, Andrews, F.M (2009) Science: Overviews Equine gastric ulcer syndrome: The continuing conundrum. Equine Vet J, 41(7):611-615.
  85. Pellegrini, F.L, Carter, S.D (2007) An equine necroscopic study to determine the sensitivity and specificity of a dual antibody test. Company Bulletin Freedom Health LLC 1-2. In: Nadeau, J.A, Andrews, F.M (2009) Science: Overviews Equine gastric ulcer syndrome: The continuing conundrum. Equine Vet J, 41(7):611-615.
  86. O'Connor, M.S, Steiner, J.M, Roussel, A.J, et al. (2004) Evaluation of urine sucrose concentration for detection of gastric ucleration in horses. Am J Vet Res, 65:31-39. In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) Equine Internal Medicine (Third Edition), Saunders, Chapter 15.
  87. Hewetson, M, Cohen, N.D, Love, S, et al. (2006) Sucrose concentration in bood: a new method for assessment of gastric permeability in horses with gastric ulceration. J Vet Intern Med, 20:388-394. In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) Equine Internal Medicine (Third Edition), Saunders, Chapter 15.
  88. Taharaguchi, S, Nagano, A, Okai, K, et al. (2007) Detection of an isoform of alpha(1)-antitrypsin in serum samples from foals with gastric ulcers. Vet Rec, 161:338-342. In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) Equine Internal Medicine (Third Edition), Saunders, Chapter 15.
  89. 89.0 89.1 Sanchez, L.C, Lester, G.D, Merritt, A.M (1998) Effect of ranitidine on intragastric pH in clinically normal neonatal foals. J Am Vet Med Assoc, 212:1407-1412. Cite error: Invalid <ref> tag; name "Lester" defined multiple times with different content
  90. Becht, J.L, Byars, T.D (1986) Gastroduodenal ulceration in foals. Equine Vet J, 18:307-312.
  91. Papich, M.G (1993) Anti-ulcer therapy. Vet Clin N Am, 202:1465-1468.
  92. 92.0 92.1 Vatistas, N.J, Snyder, J.R, Nieto, J, Thompson, D, Pollmeier, M, Holstes, J (1999) Acceptability of a paste formulation and efficacy of high dose omeprazole in healing gastric ulcers in horses maintained in race training. Equine Vet J Suppl, 29:71-76.
  93. 93.0 93.1 MacAllister, C.G, Sifferman, R.L, McClure, S.R et al. (1999) Effects of omeprazole paste on healing of spontaneous gastric ulcers in horses and foals: a field trial. Equine Vet J Suppl, 77-80. In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) Equine Internal Medicine (Third Edition), Saunders, Chapter 15. Cite error: Invalid <ref> tag; name "MacAllister" defined multiple times with different content
  94. Murray, M.J, Haven, M.L, Eichorn, E.S, et al. (1997) Effects of omeprazole on healing of naturally-occurring gastric ulcers in thoroughbred racehorses. Equine Vet J, 29:425-429. In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) Equine Internal Medicine (Third Edition), Saunders, Chapter 15.
  95. Javsicas, L.H, Sanchez, L.C (2008) The effect of omeprazole paste on intragastric pH in clinically ill neonatal foals. Equine Vet J, 40(1):41-4.
  96. Murray, M.J (1994) Gastric ulcers in adult horses. Comp Cont Educ Pract Vet, 16:792-794,797. In: Orsini, J (2000) Tutorial Article Gastric ulceration in the mature horse: a review. Equine Vet Educ, 12(1):24-27.
  97. Danesh, J.Z, Duncan, A, Russell, R.I, Mitchell, G (1988) Effect of intragastric pH on mucosal protective action of sucralfate. Gut, 29:1379-1385. In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) Equine Internal Medicine (Third Edition), Saunders, Chapter 15.
  98. Leandro, G, Pilotto, A, Franceschi, M et al. (2001) Prevention of acute NSAID-related gastroduodenal damage: a meta-analysis of controlled clinical trials. Dig Dis Sci, 46:1924-1936. In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) Equine Internal Medicine (Third Edition), Saunders, Chapter 15.
  99. Sangiah, S, MacAllister, C.C, Amouzadeh, H.R (1989) Effects of misoprostol and omeprazole on basal gastric pH and free acid content in horses. Res Vet Sci, 47:350-354. In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) Equine Internal Medicine (Third Edition), Saunders, Chapter 15.
  100. Tomlinson, J.E, Blikslager, A.T (2005) Effects of cyclooxygenase inhibitors flunixin and deracoxib on permeability of ischaemic-injured equine jejunum. Equine Vet J, 37:75-80. In: Sanchez, L.C (2010) 'Diseases Of The Stomach' in Reed, S.M, Bayly, W.M. and Sellon, D.C (2010) Equine Internal Medicine (Third Edition), Saunders, Chapter 15.
  101. Orsini, J.A, Haddock, M, Stine, L, Sullivan, E.K, Rabuffo, T.S, Smith, G (2003) Odds of moderate or severe gastric ulceration in racehorses receiving antiulcer medications. J Am Vet Med Ass, 223:336-339. In: Nadeau, J.A, Andrews, F.M (2009) Science: Overviews Equine gastric ulcer syndrome: The continuing conundrum. Equine Vet J, 41(7):611-615.
  102. Nieto, J.E, Spier, S, Pipers, F.S, Stanley, S, Aleman, M.R, Smith, D.C, Snyder, J.R (2002) Comparison of paste and suspension formulations of omeprazole in the healing of gastric ulcers in racehorses in active training. J Am Vet Med Ass, 221: 1139-1143. In: Nadeau, J.A, Andrews, F.M (2009) Science: Overviews Equine gastric ulcer syndrome: The continuing conundrum. Equine Vet J, 41(7):611-615.
  103. Videla, R, Andrews, F.M (2009) New perspectives in equine gastric ulcer syndrome.Vet Clin North Am Equine Pract, 25(2):283-301.
  104. 104.0 104.1 Andrews, F.M, Frank, N, Sommardahl, C.S, Buchanan, B.R, Elliott, S.B, Allen, V.A (2006) Effects of intravenously administrated omeprazole on gastric juice pH and gastric ulcer scores in adult horses. J Vet Intern Med, 20(5):1202-6.
  105. Holbrook, T.C, Simmons, R.D, Payton, M.E, MacAllister, C.G (2005) Effect of repeated oral administration of hypertonic electrolyte solution on equine gastric mucosa. Equine Vet J, 37: 501-504.
  106. Murray, M.J, Ball, M.M, Parker, G.A (1988) Megaoesophagus and aspiration pneumonia secondary to gastric ulceration in a foal. J Am Vet Med Assoc, 192:381-383.
  107. Nadeau, J.A, Andrews, F.M, Mathews, A.M, Argenzio, R.A, Blackford, J.T, Saxton, A.M (2000) Evaluation of diet as a cause of gastric ulcers in horses. Am J Vet Res, 61:784-790. In: Nadeau, J.A, Andrews, F.M (2009) Science: Overviews Equine gastric ulcer syndrome: The continuing conundrum. Equine Vet J, 41(7):611-615.
  108. Lybbert, T, Gibbs, P, Cohen, N, Scott, B, Sigler, D (2007) Feeding alfalfa hay to exercising horses reduces the severity of gastric mucosal ulceration. Proc Am Ass Equine Practnrs, 53:525-526. In: Nadeau, J.A, Andrews, F.M (2009) Science: Overviews Equine gastric ulcer syndrome: The continuing conundrum. Equine Vet J, 41(7):611-615.
  109. 109.0 109.1 McClure, S.R, White, G.W, Sifferman, R.L, et al. (2005) Efficacy of omeprazole paste for prevention of recurrence of gastric ulcers in horses in race training. J Am Vet Med Assoc, 226:1685-1688.
  110. McClure, S.R, White, G.W, Sifferman, R.L, et al. (2005) Efficacy of omeprazole paste for prevention of gastric ulcers in horses in race training. J Am Vet Med Assoc, 226:1681-1684.
  111. White, G.W, McClure, S.R, Sifferman, R.L, Bernard, W, Doucet, M, Vrins, A, Hughes, F, Holste, J.E, ALva, R, Fleishman, C, Cramer, L (2003) Prevention of occurrence and recurrence of gastric ulcers in horses by treatment with omeprazole at 1mg/kg/day. Proc Am Ass Equine Practnrs, 49: 220-221.
  112. White, G.W, McClure, S.R, Sifferman, R.L, Holste, J.E, Fleishman, C, Murray, M.J, Cramer, L.G (2007) Effects of short-term light to heavy exercise on gastric ulcer development in horses and efficacy of omeprazole paste in preventing gastric ulceration. J Am Vet Med Ass, 230:1680-1682.




Error in widget FBRecommend: unable to write file /var/www/wikivet.net/extensions/Widgets/compiled_templates/wrt675a0184026c12_36888101
Error in widget google+: unable to write file /var/www/wikivet.net/extensions/Widgets/compiled_templates/wrt675a0184072496_02615353
Error in widget TwitterTweet: unable to write file /var/www/wikivet.net/extensions/Widgets/compiled_templates/wrt675a01840b3dc1_15941708
WikiVet® Introduction - Help WikiVet - Report a Problem