107 bytes added ,  08:52, 11 May 2016
Line 10: Line 10:  
==Consequences of Zinc Deficiency==
 
==Consequences of Zinc Deficiency==
 
===Dog:===
 
===Dog:===
There are two principal sets of information on zinc deficiency in puppies and adult dogs. The first involves reports of experimentally-induced zinc deficiency. These investigations used low levels of zinc and enhanced levels of calcium, which is known to interfere with zinc absorption. Robertson and Burns<ref name="Robertson">Robertson, B, Burns, M (1963). “Zinc metabolism and the zinc-deficiency syndrome in the dog”. Am. J. Vet. Res. 24:997-1002.</ref> observed deficiency signs in puppies fed dietary zinc at 33 mg/kg with a calcium content of 1.1%, both values on a dry matter (DM) basis. No adverse effects were seen in puppies fed 33 mg/kg zinc and 0.3% calcium or 133 mg/kg zinc with 1.1% calcium. These results were corroborated by Sanecki ''et al.''<ref name="Sanecki">Sanecki, R, Corbin, J, Forbes, R (1982). “Tissue changes in dogs fed a zinc-deficient ration”. Am. J. Vet. Res. 43:1642-1646.</ref><ref name="Sanecki 1">Sanecki, R, Corbin, J, Forbes, R (1985). “Extracutaneous histologic changes accompanying zinc deficiency in pups”. Am. J. Vet. Res. 46:2120-2123.</ref> who produced zinc deficiency in weanling pointer puppies fed up to 35 mg/kg zinc and 2.6% calcium, both on a DM basis. Control puppies fed the same dietary calcium level but 120 mg/kg zinc showed no signs of deficiency.   
+
There are two principal sets of information on zinc deficiency in puppies and adult dogs. The first involves reports of experimentally-induced zinc deficiency. These investigations used low levels of zinc and enhanced levels of calcium, which is known to interfere with zinc absorption. Robertson and Burns<ref name="Robertson">Robertson, B, Burns, M (1963). “Zinc metabolism and the zinc-deficiency syndrome in the dog”. Am. J. Vet. Res. 24:997-1002.</ref> observed deficiency signs in puppies fed dietary zinc at 33 mg/kg with a calcium content of 1.1%, both values on a [[Nutrition Glossary#Dry Matter Basis|dry matter (DM) basis]]. No adverse effects were seen in puppies fed 33 mg/kg zinc and 0.3% calcium or 133 mg/kg zinc with 1.1% calcium. These results were corroborated by Sanecki ''et al.''<ref name="Sanecki">Sanecki, R, Corbin, J, Forbes, R (1982). “Tissue changes in dogs fed a zinc-deficient ration”. Am. J. Vet. Res. 43:1642-1646.</ref><ref name="Sanecki 1">Sanecki, R, Corbin, J, Forbes, R (1985). “Extracutaneous histologic changes accompanying zinc deficiency in pups”. Am. J. Vet. Res. 46:2120-2123.</ref> who produced zinc deficiency in weanling pointer puppies fed up to 35 mg/kg zinc and 2.6% calcium, both on a DM basis. Control puppies fed the same dietary calcium level but 120 mg/kg zinc showed no signs of deficiency.   
    
The second set of reports comes from naturally-occurring [[Zinc Deficiency|zinc deficiency syndromes]]. One occurs in northern breed dogs, typically Siberian huskies or Alaskan Malamutes, which is due to a genetic defect that interferes with zinc absorption. In one study huskies represented 76% of dogs with zinc-responsive dermatosis<ref>White, SD, Bourdeau, P, Rosychuk, RAW, Cohen, B, Bonenberger, T, Fieseler, KV, Ihrke, P, Chapman, PL, Schultheiss, P, Zur, G, Cannon, A, Outerbridge, C (2001). “Zinc-responsive dermatosis in dogs: 41 cases and literature review”. Vet. Dermatol. 12:101-109.</ref>. Treatment requires lifelong dietary supplementation with a zinc content of 150 to 200 mg/kg DM. Another syndrome has been reported in which zinc deficiency is due to feeding cereal-based pet foods containing high concentrations of substances, such as phytate, that bind zinc and reduce its availability<ref>Huber, T, Laflamme, D, Medleau, L, Comer, K, Rakich, P (1991). “Comparison of procedures for assessing adequacy of dog foods”. J. Am. Vet. Med. Assoc. 199:731-734.</ref><ref>Sousa, C, Stannard, A, Ihrke, P, Reinke, S, Schmeitzel, L (1988). “Dermatosis associated with feeding generic dog foods: 13 cases (1981 – 1982)”. J. Am. Vet. Med. Assoc. 192:676-680. </ref><ref>Van Den Broek, A, Thoday, K (1986). “Skin disease in dogs associated with zinc deficiency: A report of five cases”. J. Sm. Anim. Pract. 27:313-323.</ref>.   
 
The second set of reports comes from naturally-occurring [[Zinc Deficiency|zinc deficiency syndromes]]. One occurs in northern breed dogs, typically Siberian huskies or Alaskan Malamutes, which is due to a genetic defect that interferes with zinc absorption. In one study huskies represented 76% of dogs with zinc-responsive dermatosis<ref>White, SD, Bourdeau, P, Rosychuk, RAW, Cohen, B, Bonenberger, T, Fieseler, KV, Ihrke, P, Chapman, PL, Schultheiss, P, Zur, G, Cannon, A, Outerbridge, C (2001). “Zinc-responsive dermatosis in dogs: 41 cases and literature review”. Vet. Dermatol. 12:101-109.</ref>. Treatment requires lifelong dietary supplementation with a zinc content of 150 to 200 mg/kg DM. Another syndrome has been reported in which zinc deficiency is due to feeding cereal-based pet foods containing high concentrations of substances, such as phytate, that bind zinc and reduce its availability<ref>Huber, T, Laflamme, D, Medleau, L, Comer, K, Rakich, P (1991). “Comparison of procedures for assessing adequacy of dog foods”. J. Am. Vet. Med. Assoc. 199:731-734.</ref><ref>Sousa, C, Stannard, A, Ihrke, P, Reinke, S, Schmeitzel, L (1988). “Dermatosis associated with feeding generic dog foods: 13 cases (1981 – 1982)”. J. Am. Vet. Med. Assoc. 192:676-680. </ref><ref>Van Den Broek, A, Thoday, K (1986). “Skin disease in dogs associated with zinc deficiency: A report of five cases”. J. Sm. Anim. Pract. 27:313-323.</ref>.   
Line 21: Line 21:  
====Recognised Syndromes related to Zinc Deficiency====
 
====Recognised Syndromes related to Zinc Deficiency====
 
#'''Biochemical:''' Concentrations of serum and liver zinc decreased in kittens fed dietary zinc levels of 0.7 and 4.8 mg/kg DM but were normal in kittens fed zinc at 52 mg/kg DM.
 
#'''Biochemical:''' Concentrations of serum and liver zinc decreased in kittens fed dietary zinc levels of 0.7 and 4.8 mg/kg DM but were normal in kittens fed zinc at 52 mg/kg DM.
#'''Clinical:''' Skin lesions (parakeratosis) and reduced growth rates were observed in kittens receiving the two lower levels as shown in (i). Testicular degeneration occurred in kittens fed zinc at 15 mg/kg DM but not in those receiving 67 mg/kg DM.  
+
#'''Clinical:''' Skin lesions ([[Skin Glossary - Pathology|parakeratosis]]) and reduced growth rates were observed in kittens receiving the two lower levels as shown in (1.). Testicular degeneration occurred in kittens fed zinc at 15 mg/kg DM but not in those receiving 67 mg/kg DM.
    
==Effects of High Zinc Intakes==
 
==Effects of High Zinc Intakes==
 
===Dog:===   
 
===Dog:===   
'''Zinc is of relatively low toxicity in dogs'''. In fact some studies have shown beneficial effects of zinc at concentrations higher than the accepted nutritional requirement. Marsh et al.<ref>Marsh, KA, Ruedisueli, FL, Coe, SL, Watson, TDG (2000). “Effects of zinc and linoleic acid supplementation on the skin and coat quality of dogs receiving a complete and balanced diet”. Vet. Dermatol. 11:277-284.</ref> reported that feeding a complete and balanced diet containing higher than normal levels of zinc (400 mg/kg DM) and linoleic acid (6% DM) to black Labrador retrievers for 9 weeks was associated with significant improvements in coat condition. Dogs fed the high zinc level on its own showed a significant decrease in transepidermal water loss.  
+
'''Zinc is of relatively low toxicity in dogs'''. In fact some studies have shown beneficial effects of zinc at concentrations higher than the accepted nutritional requirement. Marsh ''et al.''<ref>Marsh, KA, Ruedisueli, FL, Coe, SL, Watson, TDG (2000). “Effects of zinc and linoleic acid supplementation on the skin and coat quality of dogs receiving a complete and balanced diet”. Vet. Dermatol. 11:277-284.</ref> reported that feeding a complete and balanced diet containing higher than normal levels of zinc (400 mg/kg DM) and [[Fat Overview - Nutrition#Roles in the Body|linoleic acid]] (6% DM) to black Labrador retrievers for 9 weeks was associated with significant improvements in coat condition. Dogs fed the high zinc level on its own showed a significant decrease in transepidermal water loss.  
Therapeutic doses of zinc of about 20 mg/kg bodyweight/day (equivalent to a dietary zinc concentration of approximately 1100 mg/kg DM for a Bedlington terrier weighing 9 kg), have been given to certain dog breeds such as the Bedlington terrier, Labrador retriever, West Highland white terrier and Dobermann pinscher, which have an inherited defect that results in toxic excesses of [[Copper - Nutrition|copper]] in the [[Liver - Anatomy & Physiology|liver]], causing [[Hepatitis, Chronic|hepatitis]] and [[cirrhosis]]. Zinc supplementation is continued for 2 to 3 months, followed by halving the dose thereafter to block copper absorption and decrease copper accumulation in the liver<ref>Brewer, G, Dick, R, Schall, W, Yuzbasiyan-Gurkan, V, Mullaney, T, Pace, C, Lindgren, J, Thomas, M, Padgett, G (1992). “Use of zinc acetate to treat copper toxicosis in dogs”. J. Am. Vet. Med. Assoc.  210:564-568.</ref><ref>Hoffmann, G, Jones, PG, Biourge, V, van den Ingh, TSGAM, Mesu, SJ, Bode, P, Rothuizen, J (2009). “Dietary management of hepatic copper accumulation in Labrador retrievers”. J. Vet. Int. Med. 23:957-963.</ref> [WikiVet Link to Copper].
+
Therapeutic doses of zinc of about 20 mg/kg bodyweight/day (equivalent to a dietary zinc concentration of approximately 1100 mg/kg DM for a Bedlington terrier weighing 9 kg), have been given to certain dog breeds such as the Bedlington terrier, Labrador retriever, West Highland white terrier and Dobermann pinscher, which have an inherited defect that results in toxic excesses of [[Copper - Nutrition|copper]] in the [[Liver - Anatomy & Physiology|liver]], causing [[Hepatitis, Chronic|hepatitis]] and [[cirrhosis]]. Zinc supplementation is continued for 2 to 3 months, followed by halving the dose thereafter to block copper absorption and decrease copper accumulation in the liver<ref>Brewer, G, Dick, R, Schall, W, Yuzbasiyan-Gurkan, V, Mullaney, T, Pace, C, Lindgren, J, Thomas, M, Padgett, G (1992). “Use of zinc acetate to treat copper toxicosis in dogs”. J. Am. Vet. Med. Assoc.  210:564-568.</ref><ref>Hoffmann, G, Jones, PG, Biourge, V, van den Ingh, TSGAM, Mesu, SJ, Bode, P, Rothuizen, J (2009). “Dietary management of hepatic copper accumulation in Labrador retrievers”. J. Vet. Int. Med. 23:957-963.</ref>.
 +
 
 
===Cat:===   
 
===Cat:===   
Sterman et al.<ref>Sterman, M, Shouse, M, Fairchild, M, Belsito, O (1986). “Kindled seizure induction alters and is altered by zinc absorption”. Brain Res. 383:382-386.</ref> fed adult cats a dietary zinc content of 600 mg/kg DM for 6 weeks with no apparent adverse effects, although the blood zinc concentration increased compared with control cats fed a zinc level of 100 mg/kg DM. '''This suggests that, like the dog, cats can tolerate zinc concentrations well above the nutritional requirement'''.
+
Sterman ''et al.''<ref>Sterman, M, Shouse, M, Fairchild, M, Belsito, O (1986). “Kindled seizure induction alters and is altered by zinc absorption”. Brain Res. 383:382-386.</ref> fed adult cats a dietary zinc content of 600 mg/kg DM for 6 weeks with no apparent adverse effects, although the blood zinc concentration increased compared with control cats fed a zinc level of 100 mg/kg DM. '''This suggests that, like the dog, cats can tolerate zinc concentrations well above the nutritional requirement'''.
    
==Dietary Sources==
 
==Dietary Sources==
Line 35: Line 36:  
==References==
 
==References==
 
<references/>
 
<references/>
 +
<br>
 +
{{Reviewed Nutrition 1
 +
|date = 22 May 2015}}
 +
{{Waltham}}
 +
{{OpenPages}}
    
[[Category:Minerals in Nutrition]]
 
[[Category:Minerals in Nutrition]]
[[Category:To Do - Nutrition]]
  −
[[Category:To Do - Nutrition preMars]]
 
Author, Donkey, Bureaucrats, Administrators
53,803

edits