Difference between revisions of "Hepatic Encephalopathy"

From WikiVet English
Jump to navigation Jump to search
(63 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{OpenPagesTop}}
+
{{unfinished}}
Also known as: '''''Portosystemic encephalopathy — Hepatic coma
 
  
See also: '''[[Hepatic Encephalopathy - Horse|Hepatic Encephalopathy in Horses]]'''
+
{{dog}}
 +
{{cat}}
  
==Introduction==
 
'''Hepatic encephalopathy''' (HE) is characterised by a complex of neurological abnormalities that occur due to congenital or acquired abnormalities in hepatic structure or function.  HE is usually associated with some form of [[Portosystemic Shunt|'''portosystemic shunt''']] (PSS) in dogs and cats, although it may also be caused by a marked reduction in functional hepatic mass.  Other causes of HE, such as [[Hepatic Microvascular Dysplasia|'''microvascular dysplasia''']], '''congenital defects of enzymes of the urea cycle''', '''arginine deficiency''' or '''organic acidaemias''', are very rare or of only experimental interest.  The clinical signs of HE are associated with increases in the blood concentration of several metabolites:
 
*'''Ammonia''' is a by-product of protein degradation which is transported in the portal vein and metabolised to urea in the liver via the urea cycle.  In animals with PSS, ammonia is not removed from the portal blood as this bypasses the liver, leading to an increase in its blood concentration.  For ammonia generation in normal animals see [[Ammonia|ammonia]].
 
*'''Mercaptans''' are products of the bacterial degradation of the amino acid methionine in the colon which are usually removed from the portal blood in the liver.
 
*'''Aromatic amino acids''' may be involved especially when the ratio of aromatic to branched chain amino acids is very high.  This is considered to be a significant component in the pathogenesis of HE in horses.
 
*'''GABA''' (gamma amino butyric acid) is an endogenous neurotransmitter which is produced from ammonia. 
 
*'''Short-chain fatty acids''' (such as butyrate and propionate) make a questionable contribution to HE.
 
*'''Endogenous benzodiazepine receptor ligands''' are also of questionable importance.
 
  
HE represents a reversible alteration in cerebral metabolism whose pathogenesis is not yet fully understood.  An increased blood concentration of '''ammonia''' is the most commonly cited cause of HE and it is known that this metabolite is able to cross the blood brain barrier and exert a directly toxic effect on neurones of the central nervous system (CNS)Since the cells of the CNS are not able to express the constituent enzymes of the urea cycle, they convert ammonia into '''glutamine''' rather than ureaGlutamine is a potent neurotransmitter in the CNS and its levels correlate with the clinical signs observed in HEIncreased concentrations of ammonia in the cerebro-spinal fluid are reported to have additional effects on cerebral metabolism, including reducing levels of the excitatory neurotransmitter serotonin and increasing the levels of NMDA (N-methyl-D-aspartate) and peripheral-type benzodiazepine receptors.
+
==Signalment==
 +
*Relatively common in dog, especially small breed dogs
 +
*Purebred dogs are more at risk
 +
 
 +
 
 +
==Description==
 +
Hepatic encephalopathy is charaterised by a complex of neurological abnormalities that may occur in the presence of advanced liver disease.  By far the most common cause in dog and cat is [[Portosystemic Shunt]] (PSS) although a marked reduction in functional mass of hepatic tissue can also leads to hepatic encephalopathy.  In rare cases, if severe acquired shunt due to hepatobiliary disease and congenital PSS have been been ruled out, congenital urea enzyme cycle deficiencies and organic acidaemias, where there is lack of ability to degrade ammonia to urea, can be considered.
 +
 
 +
This is a reversible abnormality of the cerebral metabolism.  Its pathogensis is not yet fully understood.  Increased concentration of ammonia level is most common cause of this disease manifestations due to the toxic effect it has on brain cellsDue to the lack of urea cycle in the brain, ammonia in cerebrospinal fluid (CSF) is detoxified into glutamine.  Level of glutamine can be shown to correlate with clinical signs.  Aromatic amino acids, especially tryptophan and its metabolites, share an antiport transporter with ammonia in CSF.  Consequently, dogs with congenital PSS are reported to have an increased aromatic amino acid concentrations in CSF.  Increased ammonia concentrations also have a number of other effects on the central nervous system, including a reduction in serotonin activity, an increased in NMDA (N-methyl-D-aspartic acid) and peripheral-type benzodiazepine receptors.
  
'''Aromatic amino acids''' (especially tryptophan and its metabolites) share an antiport transporter with ammonia in the blood brain barrier and dogs with congenital PSS are therefore reported to have increased levels of these amino acids in their CSF.  The neurotransmitter '''GABA''' is produced from ammonia and, as the blood ammonia concentration rises, so too do the levels of GABA in the CNS.  This transmitter imbalance is thought to increase the number of inhibitory GABA receptors present in the CNS. 
+
The sources resposible for an increase in ammonia levels include:
  
HE may be precipitated by severel conditions in animals, all of which cause an increase in the blood concentrations of ammonia and/or mercaptans:
+
*the bacterial and intestinal breakdown of urea by urease, which then diffuses into the colon from the blood.
*'''Metabolic alkalosis''' increases the production of ammonia by the kidneys and increases the uptake of urea across the blood brain barrier.
+
*the bacterial breakdown of undigested amino acids and in the colon.
*'''Hypokalaemia'''
+
*the catabolic metabolism of glutamine as an enerygy source by small intestinal enterocytes.
*'''Constipation''', increasing the length of time that colonic bacteria are able to act on undigested amino acids.
+
*endogenous hepatic protein metabolism by excess dietary protein, breakdown of lean body mass and gastrointestinal bleeding.
*'''Gastro-intestinal haemorrhage''', increasing the amount of protein available to GI bacteria.
 
*'''Diet with a high protein, purine or methionine content'''
 
*'''Azotaemia''', increasing the concentration of urea in the GI tract and also causing GI haemorrhage if [[Uraemia|uraemia]] develops.
 
*'''Hypermetabolic state or fever''', as may occur in many forms of systemic illness due to the effects of inflammatory cytokines and which leads to the catabolism of lean body protein.  A similar phenemenon may occur if glucocorticoids are administered at high doses.
 
*'''Dehydration''' increases the effective circulating ammonia concentraton.
 
  
==Signalment==
 
HE occurs in those breeds that often develop congenital PSS, of which small breeds of dog are most at risk.  Most dogs with PSS present before the end of their first year of life.  Microvascular dysplasia and congenital defects of the urea cycle are very rare.  Acquired PSS may occur in animals with '''[[Hepatitis, Chronic|chronic hepatitis]]''', to which Labrador retrievers, West Highland white terriers, English cocker spaniels and Dobermans are predisposed.
 
  
 
==Diagnosis==
 
==Diagnosis==
 
===Clinical Signs===
 
===Clinical Signs===
 +
 
====Dog====
 
====Dog====
 
Typical signs include:
 
Typical signs include:
*'''Anorexia, depression''' and '''lethargy'''.
+
*anorexia, depression and lethargy
*'''Bizarre behaviour''', including aimless wandering, head pressing, circling, pacing, pica and compulsive eating and drinking.
+
*aimless wandering, head pressing, , circling and pacing
*'''Central or amaurotic blindness''', where animals retain a menace response but will collide with objects when ambulatory.
+
*central blindness
*'''Comas''' and reactive '''seizures''' are uncommon.
+
*poor growth rate
*'''Gastrointestinal signs''' may be observed, including [[Vomiting|vomiting]].
+
*gastrointestinal signs such as vomiting
 +
*coma (uncommon)
 +
*seizures (uncommon)
  
Other signs that occur in animals with congenital PSS or microvascular dysplasia include:
+
Other signs include:
*Temporary '''resolution of clinical signs with antimicrobial therapy''', due to a reduction in the number of colonic bacteria.
+
*temporary resolution of clinical signs with antimicrobial therapy
*'''Prolonged recovery from sedation or anaesthesia''' because the metabolic capacity of the liver is reduced.
+
*prolonged recovery from sedation or anaesthesia
*'''Polyuria and polydipsia''' in 33% of cases and other signs of urinary tract disease.
+
*polyuria and polydipsia in a third of cases
  
 
====Cat====
 
====Cat====
 
Typical signs include:
 
Typical signs include:
*'''Hypersalivation''' or ptyalism is the most commonly reported clinical feature but this is rarely reported in dogs.
+
*well grown and in good body condition which in contrast to dogs
*'''Seizures''' occur in 50% of cases but are uncommon in dogs.
+
*hypersalivation or ptyalism is the most commonly reported clinical feature, but rarely in dogs
*'''Compulsive behaviour''' is less common than in dogs.
+
*seizures reported in 50% of cases, but uncommon in dogs
 +
*anorexia, vomiting and diarrhoea, polyuria and polydipsia is less common
 +
*compulsive behaviour is less common compared to in dogs
 +
 
  
 
===Laboratory Tests===
 
===Laboratory Tests===
Although many parameters are likely to be altered in animals with HE, most of these changes result from the underlying disease.  '''Fasting hyperammonaemia''' provides an explanation for HE and should increase suspicion of congenital (or acquired) PSS.  An '''ammonia tolerance test''' can also be performed, in which ammonium chloride is administered by orogastric tube or by high colonic infusion.  Blood samples taken 30 minutes later should show an increased level of circulating ammonia.  Since this procedure may be dangerous to the animal, it may be preferable to perform a '''modified ammonia tolerance test''' by feeding a meal containing 25% of the animal's daily requirement and measuring blood ammonia concentration 6 hours later.
+
====Biochemistry====
 +
*Hypoproteinaemia
 +
*Mild to moderate increase in alanine aminotransferase (ALT) and alkaline phosphatase (ALP)
 +
*Decreased blood urea nitrogen (BUN)
 +
*Hypoglycaemia in a small number of dogs
 +
 
 +
====Other Tests====
 +
*Fasting hyperammonaemia
 +
*Increased postprandial ± preprandial bile acids
  
 
===Diagnostic Imaging===
 
===Diagnostic Imaging===
Imaging is not required to make a diagnosis of HE but it may reveal abnormalities relating to the underlying cause.
+
*Abdominal radiographs shows microhepatica and often renomegaly.  Renomegally may relate to altered splanchnic blood flow or o increased metabolic activity of the kidney due to hyperammonaemia.  These findings in a young dog is highly suggestive of [[Portosystemic Shunt]].
 +
*Confirmation of a [[Portosystemic Shunt]] requires visualisation of the shunting blood vessel.  This may be done with either ultrasonography or contrast portography or at surgery.
  
==Pathology==
 
Myelin degeneration, consisting of vacuoles between the grey and white matter, may be observed on histopathological examination of cerebral tissues from affected animals.
 
  
 
==Treatment==
 
==Treatment==
The underlying cause of the HE should be treated, including surgical ligation of '''congenital''' PSS. In the meantime, the HE should be managed medically with a typical regime involving the following components:
+
===Surgical management===
*'''Food should be withheld'''
+
*Surgical ligation of shunt is recommended in cases of [[Portosystemic Shunt]].
*'''Intra-venous fluid therapy''', which can also be used to correct any hypokalaemia or metabolic alkalosis which may be precipitating the HE.
+
 
*'''Enemas''' of warm water or lactulose to decrease the population of bacteria in the [[Colon - Anatomy & Physiology|colon]].
+
===Medical management===
*'''Antibiotics''' given orally or per rectum to reduce the number of colonic bacteria.  Suitable products include [[Penicillins|ampicillin]], [[Aminoglycosides|neomycin]] (which, although highly toxic when administered systemically, is also highly polar and therefore restricted to the GI tract) or [[Nitroimidazoles|metronidazole]].
+
*Enemas to decrease the amount of bacteria in the colon.
*[[Lactulose|'''Lactulose''']] can be given orally or by enema.  It is a synthetic disaccharide which, when metabolised by the acidifying colonic bacteria, donates a hydrogen ion to ammonia to form ammonium ionsBecause these ions are charged, the are not absorbed freely and are rather trapped in the colon and excreted in faeces.  Lactulose also acts as an osmotic laxative, preventing constipation and reducing the time that colonic bacteria are able to act on undigested amino acids to form ammonia.  
+
*Oral antibiotics such as ampicillin, neomycin or metronidazole can be given initially reduce the amount of bacteria in intestines and hence decrease the production of ammonia.
*When the animal is to be fed, a '''diet with a high carbohydrate, low protein (2g/kg/day) and low fat''' content is recommended. Both soluble and insoluble fibre may be beneficial in appropriate quantities as the former traps ammonia in the colon and the latter reduces intestinal transit time and prevents constipation.  In an animals with PSS or severe hepatic insufficiency, it may not be advisable to restrict protein too assiduously as these animals are likely to be [[Hypoalbuminaemia|hypoalbuminaemic]].
+
*Lactulose PO
*'''Seizures''' should be treated with anticonvulsant medication but [[Benzodiazepines|benzodiazepines]] should be avoided as they may worsen the HE.
+
**This is a synthetic disaccharide which is metabolised by the colonic bacteria, acidifying the colonAmmonia is converted into ammonium ions which cannot be absorbed, hence trapped in the colon and excreted in the faeces.  Lactulose also acts as a osmotic laxative, allowing more faeces and bacteria to be washed out.
*Inclusion of L - Ornithine-l-aspartate enzymes, which accelerate the urea cycle and in turn facilitate conversion of ammonia to urea; may be helpful in acute episodes of HE. It may also be recommended to prevent HE in patients with severe hepatic functional compromise. It can, however, be safely used in patients with normal renal function.
+
*A high carbohydrate, low protein (2g/kg/day) and low fat diet is recommended.
 +
**The aim is to provide adequate nutrients and energy to support hepatic tissue repair, reduce the metabolic load on the liver and minimise the development of hepatic encephalopathy
 +
 
  
 
==Prognosis==
 
==Prognosis==
In cases of PSS, the prognosis in dogs for resolution of clinical signs after total surgical ligation is excellent.  However, the response to surgical intervention in cats is less promising than in dogs.
 
  
{{Learning
 
|literature search = [http://www.cabdirect.org/search.html?q=%28%28title%3A%28%22Portosystemic+encephalopathy%22%29%29%29+OR+%28%28title%3A%28%22Hepatic+coma%22%29%29%29+OR+%28%28title%3A%28%22Hepatic+Encephalopathy%22%29%29%29 Hepatic Encephalopathy publications]
 
|Vetstream = [https://www.vetstream.com/felis/Content/Disease/dis02457.asp Hepatic encephalopathy]
 
}}
 
  
 
==References==
 
==References==
 
*Hall, E.J, Simpson, J.W. and Williams, D.A. (2005) '''BSAVA Manual of Canine and Feline Gastroenterology (2nd Edition)''' ''BSAVA''
 
*Hall, E.J, Simpson, J.W. and Williams, D.A. (2005) '''BSAVA Manual of Canine and Feline Gastroenterology (2nd Edition)''' ''BSAVA''
 +
*Ettinger, S.J. and Feldman, E. C. (2000) '''Textbook of Veterinary Internal Medicine Diseases of the Dog and Cat Volume 2''' (Fifth Edition) ''W.B. Saunders Company''.
 
*Nelson, R.W. and Couto, C.G. (2009) '''Small Animal Internal Medicine (Fourth Edition)''' ''Mosby Elsevier''.
 
*Nelson, R.W. and Couto, C.G. (2009) '''Small Animal Internal Medicine (Fourth Edition)''' ''Mosby Elsevier''.
*Ettinger, S.J. and Feldman, E. C. (2000) '''Textbook of Veterinary Internal Medicine Diseases of the Dog and Cat Volume 2''' (Fifth Edition) ''W.B. Saunders Company''.
 
 
 
{{review}}
 
 
{{OpenPages}}
 
 
[[Category:Liver_-_General_Pathology]]
 
[[Category:Liver Diseases - Dog]][[Category:Liver Diseases - Cat]]
 
[[Category:Neurological Diseases - Dog]][[Category:Neurological Diseases - Cat]]
 
[[Category:Expert_Review]]
 

Revision as of 09:17, 11 August 2009



Category:WikiClinical CanineCow
Category:WikiClinical FelineCow


Signalment

  • Relatively common in dog, especially small breed dogs
  • Purebred dogs are more at risk


Description

Hepatic encephalopathy is charaterised by a complex of neurological abnormalities that may occur in the presence of advanced liver disease. By far the most common cause in dog and cat is Portosystemic Shunt (PSS) although a marked reduction in functional mass of hepatic tissue can also leads to hepatic encephalopathy. In rare cases, if severe acquired shunt due to hepatobiliary disease and congenital PSS have been been ruled out, congenital urea enzyme cycle deficiencies and organic acidaemias, where there is lack of ability to degrade ammonia to urea, can be considered.

This is a reversible abnormality of the cerebral metabolism. Its pathogensis is not yet fully understood. Increased concentration of ammonia level is most common cause of this disease manifestations due to the toxic effect it has on brain cells. Due to the lack of urea cycle in the brain, ammonia in cerebrospinal fluid (CSF) is detoxified into glutamine. Level of glutamine can be shown to correlate with clinical signs. Aromatic amino acids, especially tryptophan and its metabolites, share an antiport transporter with ammonia in CSF. Consequently, dogs with congenital PSS are reported to have an increased aromatic amino acid concentrations in CSF. Increased ammonia concentrations also have a number of other effects on the central nervous system, including a reduction in serotonin activity, an increased in NMDA (N-methyl-D-aspartic acid) and peripheral-type benzodiazepine receptors.

The sources resposible for an increase in ammonia levels include:

  • the bacterial and intestinal breakdown of urea by urease, which then diffuses into the colon from the blood.
  • the bacterial breakdown of undigested amino acids and in the colon.
  • the catabolic metabolism of glutamine as an enerygy source by small intestinal enterocytes.
  • endogenous hepatic protein metabolism by excess dietary protein, breakdown of lean body mass and gastrointestinal bleeding.


Diagnosis

Clinical Signs

Dog

Typical signs include:

  • anorexia, depression and lethargy
  • aimless wandering, head pressing, , circling and pacing
  • central blindness
  • poor growth rate
  • gastrointestinal signs such as vomiting
  • coma (uncommon)
  • seizures (uncommon)

Other signs include:

  • temporary resolution of clinical signs with antimicrobial therapy
  • prolonged recovery from sedation or anaesthesia
  • polyuria and polydipsia in a third of cases

Cat

Typical signs include:

  • well grown and in good body condition which in contrast to dogs
  • hypersalivation or ptyalism is the most commonly reported clinical feature, but rarely in dogs
  • seizures reported in 50% of cases, but uncommon in dogs
  • anorexia, vomiting and diarrhoea, polyuria and polydipsia is less common
  • compulsive behaviour is less common compared to in dogs


Laboratory Tests

Biochemistry

  • Hypoproteinaemia
  • Mild to moderate increase in alanine aminotransferase (ALT) and alkaline phosphatase (ALP)
  • Decreased blood urea nitrogen (BUN)
  • Hypoglycaemia in a small number of dogs

Other Tests

  • Fasting hyperammonaemia
  • Increased postprandial ± preprandial bile acids

Diagnostic Imaging

  • Abdominal radiographs shows microhepatica and often renomegaly. Renomegally may relate to altered splanchnic blood flow or o increased metabolic activity of the kidney due to hyperammonaemia. These findings in a young dog is highly suggestive of Portosystemic Shunt.
  • Confirmation of a Portosystemic Shunt requires visualisation of the shunting blood vessel. This may be done with either ultrasonography or contrast portography or at surgery.


Treatment

Surgical management

Medical management

  • Enemas to decrease the amount of bacteria in the colon.
  • Oral antibiotics such as ampicillin, neomycin or metronidazole can be given initially reduce the amount of bacteria in intestines and hence decrease the production of ammonia.
  • Lactulose PO
    • This is a synthetic disaccharide which is metabolised by the colonic bacteria, acidifying the colon. Ammonia is converted into ammonium ions which cannot be absorbed, hence trapped in the colon and excreted in the faeces. Lactulose also acts as a osmotic laxative, allowing more faeces and bacteria to be washed out.
  • A high carbohydrate, low protein (2g/kg/day) and low fat diet is recommended.
    • The aim is to provide adequate nutrients and energy to support hepatic tissue repair, reduce the metabolic load on the liver and minimise the development of hepatic encephalopathy


Prognosis

References

  • Hall, E.J, Simpson, J.W. and Williams, D.A. (2005) BSAVA Manual of Canine and Feline Gastroenterology (2nd Edition) BSAVA
  • Ettinger, S.J. and Feldman, E. C. (2000) Textbook of Veterinary Internal Medicine Diseases of the Dog and Cat Volume 2 (Fifth Edition) W.B. Saunders Company.
  • Nelson, R.W. and Couto, C.G. (2009) Small Animal Internal Medicine (Fourth Edition) Mosby Elsevier.