Difference between revisions of "Equine Special Senses - Horse Anatomy"
(→Ear) |
(→Ear) |
||
Line 78: | Line 78: | ||
[[Image:Central Auditory Pathway.jpg|thumb|right|150px|Central Auditory Pathway - Copyright David Bainbridge]] | [[Image:Central Auditory Pathway.jpg|thumb|right|150px|Central Auditory Pathway - Copyright David Bainbridge]] | ||
The signal that has been created from the sound waves that were picked up by the ear is carried to the brain by the '''vestibulocochlear nerve''' ([[Equine Cranial Nerves - Horse Anatomy#Vestibulocochlear Nerve (VII)|CN VIII]]), which synapses in the '''cochlear nucleus'''. From here, the auditory information is then split. Those nerve fibres that travel to the '''ventral cochlear nuclear cells''' synapse on their target cells. The ventral cochlear nuclear cells then project to a group of cells within the {Equine Brain - Horse Anatomy#Hindbrain|medulla]], called the '''superior olive nucleus'''. It is here that the timing and loudness of the sound that was picked up in each ear is compared, allowing determination of the direction that the sound came from. This information is then transferred via the '''lateral lemniscus''' to the '''inferior colliculus'''. The other nerve fibres start in the '''dorsal cochlear nucleus'''. It is here that the quality of sound is determined, as it compares the frequency differences. This pathway leads directly to the '''inferior colliculus''', via the '''lateral lemniscus'''. Both of these pathways are bilateral. This means that if there is a lesion at any point along the pathway, it usually has no effect on hearing. Deafness is only usually caused if there is damage to either the auditory nerve, the cochlea, or the middle ear. From the inferior colliculus, the information from both pathways is sent to the '''medial geniculate nucleus''' of the [[Equine Brain - Horse Anatomy#Forebrain|thalamus]], which then leads on to the primary auditory cortex of the [[Equine Brain - Horse Anatomy#Forebrain|cerebral cortex]]. | The signal that has been created from the sound waves that were picked up by the ear is carried to the brain by the '''vestibulocochlear nerve''' ([[Equine Cranial Nerves - Horse Anatomy#Vestibulocochlear Nerve (VII)|CN VIII]]), which synapses in the '''cochlear nucleus'''. From here, the auditory information is then split. Those nerve fibres that travel to the '''ventral cochlear nuclear cells''' synapse on their target cells. The ventral cochlear nuclear cells then project to a group of cells within the {Equine Brain - Horse Anatomy#Hindbrain|medulla]], called the '''superior olive nucleus'''. It is here that the timing and loudness of the sound that was picked up in each ear is compared, allowing determination of the direction that the sound came from. This information is then transferred via the '''lateral lemniscus''' to the '''inferior colliculus'''. The other nerve fibres start in the '''dorsal cochlear nucleus'''. It is here that the quality of sound is determined, as it compares the frequency differences. This pathway leads directly to the '''inferior colliculus''', via the '''lateral lemniscus'''. Both of these pathways are bilateral. This means that if there is a lesion at any point along the pathway, it usually has no effect on hearing. Deafness is only usually caused if there is damage to either the auditory nerve, the cochlea, or the middle ear. From the inferior colliculus, the information from both pathways is sent to the '''medial geniculate nucleus''' of the [[Equine Brain - Horse Anatomy#Forebrain|thalamus]], which then leads on to the primary auditory cortex of the [[Equine Brain - Horse Anatomy#Forebrain|cerebral cortex]]. | ||
+ | |||
+ | ===Vestibular System and Balance=== | ||
+ | [[Image:Vestibular Receptors and Balance.jpg|thumb|right|150px|Vestibular Receptors and Balance - Copyright David Bainbridge]] | ||
+ | The vestibular sense is rather more unconscious than that of hearing. The '''vestibular labyrinth''', that is contained within the '''bony labyrinth''' of the '''inner ear''' is the part of the ear that is involved with the vestibular sense - balance. The vestibular labyrinth contains the '''saccule''', the '''utricle''' and the '''semicircular ducts''' - the semicircular ducts being housed within the semicircular canals. There are sensory hair cells within the vestibular labyrinth, similar to those in the other regions of the inner ear, which detect movement. However, these sensory hair cells are lodged in the '''ampullary cupulae''' or in '''otoliths''' (minute calcareous particles), rather than in the tectorial membrane as in the rest of the ear. The '''ampulla''' is a swelling at the base of the semicircular ducts. The sensory hair cells project upwards from the ampulla into the '''cupula''', which is a gelatinous mass. The ampullary cupulae detect flow around the semicircular canals, which are filled with '''endolymph''', and there is an inertia of fluid for detection of '''angular acceleration'''. Angular acceleration is the detection of motion of the head in any direction. '''Otoliths''' are denser than endolymph - they are calcareous and crystalline. They are contained within the '''maculae''', and detect '''gravity and linear acceleration'''. Linear acceleration is the detection of motion along a line, for example when the horse leans to one side. Movement of the sensory hair cells triggers impulses, which are carried by the vestibular portion of the vestibulocochlear nerve ([[Equine Cranial Nerves - Horse Anatomy#Vestibulocochlear Nerve (VIII)|CN VIII]]). | ||
==Gustatory System== | ==Gustatory System== |
Revision as of 12:21, 22 November 2012
Eye
Ear
The ear is a paired sensory organ, that is involved in both hearing and balance. For this reason, the ear is known as the vestibulocochlear organ. Sound waves that are transmitted into the ear provide a mechanical stimulus. These mechanical stimuli are then transferred into electrical signals by the cochlea. Neuroreceptors in the ear allow the horse to gain a perception of position and movement. Anatomically, the ear can be looked at in three parts:
1. Outer ear - pinna and auditory canal
2. Middle ear - contains the malleus, incus and stapes bones - known as the ossicles
3. Inner ear - contains the membranous and bony labyrinths, and the cochlea
Outer Ear
The pinna (or auricle) is defined as the outer projecting part of the ear, that is the part of the ear that can be seen. It consists of the auricular cartilage, surrounded by skin, which allows for flexibility and elasticity. The auricular cartilage connects to scutiform cartilage, which itself connects to annular cartilage, which allows for articulation. These cartilages fit into the bony passage of the ear canal - also called the external auditory meatus, which leads to the tympanic membrane. This is the deepest boundary of the outer ear. Muscles around the base of the ear that are attached to the skull allow movement of the pinna, so the ear can be directed to the source of sound:
Muscle | Origin | Innervation | Function |
---|---|---|---|
Preauricular | Deep temporal fascia | Auriculopalpebral branch of facial nerve
(cranial nerve VII) |
Moves the ear cranio-laterally, so the pinna is facing forwards |
Ventroauricular | Laryngeal fascia | Retroauricular branch of facial nerve
(cranial nerve VII) |
Moves the ear laterally |
Postauricular | Medial cervical raphe | Retroauricular branch of facial nerve
(cranial nerve VII) |
Moves the ear caudo-laterally, so the pinna is facing backwards |
Middle Ear
The middle ear consists of the tympanic cavity, the auditory ossicles and the eustachian tube. The boundary between the middle and inner ear is the oval window. The auditory ossicles are attached to the wall of the tympanic cavity by many ligaments and mucosal folds. The tympanic cavity is located within the petrous temporal bone, and can be divided into dorsal, middle and ventral parts:
- Dorsal: contains the auricular ossicle
- Middle: contians the tympanic membrane within its lateral wall, and opens rostrally into the nasopharynx via the eustachian tube
- Ventral: the tympanic bulla - a thin-walled, bulbous expansion of the temporal bone, which houses an extension of the tympanic cavity
The oval window is positioned rostrodorsally, to which one end of the stapes is attached by an annular ligament. It functions to connect the tympanic cavity with the inner ear. The round window is positioned more caudally, and leads to the cavity of the cochlea.
Sound vibrations are transmitted from the tympanic membrane, across the tympanic cavity, via the ossicles (malleus, incus, then stapes). The ossicles, as well as transmitting sound vibrations from the tympanic membrane, also magnify the vibrations by about 20 times. This is necessary for initiating waves in the endolymph of the cochlea. The magnification is achieved by the action of two muscles that are attached to the ossicles, and which act as antagonists of each other. These two muscles are the tensor tympani muscle and the stapedius muscle. The tensor tympani muscle originates within the tympanic cavity, and inserts on the malleus. The contraction of this muscle creates tension of the ossicles, and therefore also of the tympanic membrane, all of which results in greater sensitivity. The stapedius muscle originates from the wall of the tympanic cavity, and inserts on the stapes. Contraction of this muscle pulls the end of the stapes away from the oval window, thereby reducing the fource of the transmission of sound vibrations.
The eustachian tube connects the tympanic cavity to the nasopharynx, which mark the beginning and end of the eustachian tube, respectively. The eustachian tube functions to equalise pressure on either side of the tympanic cavity, by opening while yawning or swallowing, for example. In the horse, the guttural pouch is a paired diverticulum of the eustacian tube that is unique to this species. This is of clinical importance.
Inner Ear
The inner ear is located within the petrous temporal bone. The inner ear contains the membranous labyrinth, which is surrounded by the bony labyrinth. The membranous labyrinth is an interconnected group of fluid-filled membranous sacs. The fluid contained within it is known as endolymph. It is the movement of the endolymph that stimulates the sensory cells within the membranous wall. The membranous labyrinth consists of:
- Vestibular labyrinth: contains the receptor organ involved with balance, containing the saccule, utricle and the semicircular ducts. The saccule and utricle contain sensory maculae within their walls, and there's a sensory crista within the ampullae of the semicircular ducts. The maculae and ampullae sense and conduct impulses concerned with balance via the vestibular nerve. The three semicircular ducts arise from the utricle, and the cochlear duct arises from the saccule.
- Cochlear labyrinth: contains the organ involved with hearing. It consists of the organ of Corti, within the cochlear duct. The cochlear duct is fluid-filled, the fluid being endolymph. The organ of Corti contains the receptor cells for hearing.
- Ductus reuniens: this is the duct through which the above two labyrinths communicate
The bony labyrinth consists of:
- Vestibule: a chamber in the centre of the bony labyrinth, which communicates with both the cochlea and the semicircular canals. The oval and the round windows are both located in the lateral wall of the vestibule.
- Semicircular canals: contain the semicircular ducts, which have arisen from the utricle of the vestibular labyrinth. There are three semicircular canals, corresponding to the three dimensions in which you can move, so they are almost at right angles with each other. Each duct has two crura (leg-like parts). One crus of each duct has an ampulla, which is an expansion of the duct. Movement of endolymph stimulates receptor cells within the ampullae.
- Cochlea: forms a spiral around a central hollow core of bone, called the modiolus,which contains the cochlear nerve. The spiral lamina projects into the spiral canal, partially bisecting the lumen into two parts, which are called the scala tympani and the scala vestibuli. The scala media (the cochlear duct) is between these two parts. In the horse, the cochlea makes 2.5 turns.
The external ear receives sounds, which cause vibrations of the tympanic membrane. These vibrations move along the ossicles of the middle ear, to be transmitted to the inner ear. The stapes is connected to the oval window, so when the stapes transmits vibrations, this causes movement of perilymph that is in the inner ear. The movement of the perilymph is transmitted via the scala vestibuli and the scala tympani, to the round window, where it induces movement of the secondary tympanic membrane. This results in the movement of the endolymph of the cochlear duct, causing pressure on the tectorial membrane, which then induces pressure on the sensory hairs, stimulating the receptor cells within the cochlear duct to send impulses to the spiral ganglion. The axons of the spiral ganglion form part of the vestibulocochlear nerve.
Central Auditory Pathways
The signal that has been created from the sound waves that were picked up by the ear is carried to the brain by the vestibulocochlear nerve (CN VIII), which synapses in the cochlear nucleus. From here, the auditory information is then split. Those nerve fibres that travel to the ventral cochlear nuclear cells synapse on their target cells. The ventral cochlear nuclear cells then project to a group of cells within the {Equine Brain - Horse Anatomy#Hindbrain|medulla]], called the superior olive nucleus. It is here that the timing and loudness of the sound that was picked up in each ear is compared, allowing determination of the direction that the sound came from. This information is then transferred via the lateral lemniscus to the inferior colliculus. The other nerve fibres start in the dorsal cochlear nucleus. It is here that the quality of sound is determined, as it compares the frequency differences. This pathway leads directly to the inferior colliculus, via the lateral lemniscus. Both of these pathways are bilateral. This means that if there is a lesion at any point along the pathway, it usually has no effect on hearing. Deafness is only usually caused if there is damage to either the auditory nerve, the cochlea, or the middle ear. From the inferior colliculus, the information from both pathways is sent to the medial geniculate nucleus of the thalamus, which then leads on to the primary auditory cortex of the cerebral cortex.
Vestibular System and Balance
The vestibular sense is rather more unconscious than that of hearing. The vestibular labyrinth, that is contained within the bony labyrinth of the inner ear is the part of the ear that is involved with the vestibular sense - balance. The vestibular labyrinth contains the saccule, the utricle and the semicircular ducts - the semicircular ducts being housed within the semicircular canals. There are sensory hair cells within the vestibular labyrinth, similar to those in the other regions of the inner ear, which detect movement. However, these sensory hair cells are lodged in the ampullary cupulae or in otoliths (minute calcareous particles), rather than in the tectorial membrane as in the rest of the ear. The ampulla is a swelling at the base of the semicircular ducts. The sensory hair cells project upwards from the ampulla into the cupula, which is a gelatinous mass. The ampullary cupulae detect flow around the semicircular canals, which are filled with endolymph, and there is an inertia of fluid for detection of angular acceleration. Angular acceleration is the detection of motion of the head in any direction. Otoliths are denser than endolymph - they are calcareous and crystalline. They are contained within the maculae, and detect gravity and linear acceleration. Linear acceleration is the detection of motion along a line, for example when the horse leans to one side. Movement of the sensory hair cells triggers impulses, which are carried by the vestibular portion of the vestibulocochlear nerve (CN VIII).