Difference between revisions of "Bone Response to Damage"

From WikiVet English
Jump to navigation Jump to search
Line 36: Line 36:
 
***Produced by <u>C-cells in the thyroid glands</u> in response to <u>increased</u> serum calcium
 
***Produced by <u>C-cells in the thyroid glands</u> in response to <u>increased</u> serum calcium
 
***Inhibits osteoclasts
 
***Inhibits osteoclasts
 
===Bone dynamics===
 
 
*Bone growth and maintenance of normal structure are directly related to mechanical forces
 
*Mechanical forces generate bioelectrical potentials (piezoelectricity)
 
**These potentials strengthen bone
 
**Inactivity reduces the potentials -> bone loss
 
 
*In neonates:
 
**Bone growth predominates
 
**Modelling is important
 
*In adults:
 
**Formation of bone is balanced by resorption - remodelling
 
**Continues throughout life under the influence of hormones and mechanical pressure
 
**Bone resorption may exceed formation in pathological states (hormonal, trauma, nutritional) or in old age and disuse
 
 
 
 
<big><center>[[Bones|'''BACK TO BONES''']]</center></big>
 

Revision as of 10:30, 18 July 2008

BACK TO BONES



Normal structure

    • Damage to periosteum:
      • Invokes a hyperplastic reaction of the inner layer
      • Is painful
      • Exostoses can remodel or remain
    • Lifting of periosteum causes new bone formation below
    • Circumferential incision (e.g. during fracture)
      • Longitudinal bone growth results
      • May be only on one side where periosteum is damaged


Physis (Growth plate)

  • Site of many congenital or nutritional bone diseases in the growing animal
  • Open in neonates and growing animals
    • Chondrocyte proliferation balances cell maturation and death
  • Closes and ossifies at maturity
    • Regulated by androgens
  • If growth teporarily stops -> layer of bone seals the growth plate -> moves into metaphysis when growth resumes -> forms Harris lines

Bone resorption

  • Mediated by two hormones:
    • Parathyroid hormone (PTH)
      • Produced by chief cells in the parathyroid glands in response to decreased serum calcium
      • In response, osteoclasts increase in number and resorb mineralised matrix - increase Ca in blood
    • Calcitonin
      • Produced by C-cells in the thyroid glands in response to increased serum calcium
      • Inhibits osteoclasts