Major Histocompatability Complexes
Jump to navigation
Jump to search
|
Structure and Function of MHC Class I
Structure
- MHC class I is expressed on virtually all nucleated cells.
- MHC class I consists of a membrane-associated heavy chain bound non-covalently with a secreted light chain.
- Heavy chain:
- Made up of three distinct extracellular protein domains.
- α1, α2 and α3.
- The C- terminus is cytoplasmic.
- Made up of three distinct extracellular protein domains.
- Light chain:
- Known as β2-microglobulin.
- Similar in structure to one of the heavy chain domains.
- Not membrane associated.
- But binds to the α3-domain of the heavy chain.
- Heavy chain:
- The MHC class I domains are structurally and genetically related to immunoglobulin and TcR domains.
- The outer domains (α1 and α2) are like the variable domains.
- The α3 domain and β2m are like thrconstant domains.
- MHC class I molecules are folded to form specific 3-dimensional structures.
- The α1 and α2 domains are folded to produce an antigen-binding groove.
- This groove can bind molecules of a limited size only.
- 8-10 amino acids.
- This limits the size of epitope seen by the T-cell receptors.
- This groove can bind molecules of a limited size only.
- The α1 and α2 domains are folded to produce an antigen-binding groove.
Function
- MHC class I molecules bind antigenic peptides derived from within the cell and present these to the T-cell receptors of CD8+ T-cells.
- E.g. virus-encoded antigen.
- Endogenously produced proteins are produced in the cell cytoplasm.
- Intracellular pathogens utilise this cellular metabolic machinery for protein synthesis.
- Many of the proteins synthesised are not used and are re-utilised by the cell.
- Peptides from these proteins are transported to the Golgi apparatus by specific transporter molecules.
- These peptides then interact with newly synthesized MHC class I molecules.
- Only MHC class I that is associated with peptide will be expressed at the surface.
- The immune system is therefore able to see antigen from intracleeular pathogens.
Structure and Function Of MHC Class II
Structure
- MHC class II is expressed mainly on macrophages, dendritic cells and B-lymphocytes.
- MHC class II consists of membrane-associated α and β chains.
- Each chain is a transmembrane glycoprotein.
- The extracellular parts of each chain have two Ig-like domains.
- α1 and 7alpha;2, β1 and β2.
- The outer domains (α1 and β1) are variable-like.
- The inner domains (α2 and β2) are constant-like.
- α1 and 7alpha;2, β1 and β2.
- The 3-dimensional structure of MHC class II is similar to MHC class I.
- The outer domains of the α and β chains fold in a similar way to the α1 and α2 domains of class I.
- Produce the antigen-binding groove.
- The outer domains of the α and β chains fold in a similar way to the α1 and α2 domains of class I.
Function
- MHC class II molecules bind antigenic peptides and present them to TcR on CD4+ T-cells.
- The antigen-binding groove is larger and more open than that of MHC class I.
- MHC II can therefore interact with larger peptides.
- MHC class II are present on those cells that have antigen-processing ability.
- Interact with antigenic peptides originating from an extracellular source.
- After synthesis, MHC class II molecules are transported into special endosomes.
- These endosomes fuse with lysosomes that contain the digested remnants of phagocytosed microorganisms.
- The peptides from the lysosome interact with the MHC class II molecules.
- The peptide-MHC class II complex gets transported to the cell surface.
- The peptides from the lysosome interact with the MHC class II molecules.
- These endosomes fuse with lysosomes that contain the digested remnants of phagocytosed microorganisms.
Interaction of MHC With Antigen
- The MHC molecules do not recognise specific amino acid sequences of antigens.
- Instead, they recognise particular motifs of amino acids.
- The association of any MHC allele with a peptide may be determined by the presence of as few as two amino acids.
- However, these determinants must be present within a particular array.
- The actual identity of the amino acids in not important for MHC binding.
- Instead, the physical and chemical characteristics of the amino acid are vital.
- Interactions of individual amino acids at the head and tail of the peptide-binding groove control the binding of peptides.
- Are mainly positioned at the floor of the antigen-binding groove, or within the helices facing into the groove.
- These MHC amino acids associate with amino acids near the ends of the peptides.
- The intervening stretch of peptide folds into a helix within the groove.
- Is the target for T cell receptor recognition.
TcR-MHC Interaction
- Only peptide associated with self-MHC will interact with and activate T-cells.
- T-cells cannot be activated by a peptide on a foreign cell.
- T-cells will react against foreign MHC molecules.
- This is the basis of graft rejection.
The Genetics of the MHC
- Different individuals have different critical amino acids within the MHC.
- I.e. different amino acids that determine peptide binding.
- This variation is termed MHC polymorphism.
- There are millions of variations in antibodies and TcR.
- However, with MHC there is very limited variation between molecules.
- MHC polymorphism has been best studied in the human.
In the Human
- Humans express:
- Three types (loci) of MHC class I molecules.
- HLA (Human Leukocyte Antigen)- A, B, and C.
- Three loci of MHC class II molecules.
- HLA-DP, DQ and DR.
- Three types (loci) of MHC class I molecules.
- In the entire human population there are only approximately 50 different variants (alleles) at each MHC class I and class II locus.
- The variation within MHC class I is entirely on the class I heavy chain.
- The β2m is invariant.
- The variation within MHC class II is mainly within the β chains.
- The variation within MHC class I is entirely on the class I heavy chain.
- Every individual has two alleles at each MHC locus.
- One inherited from each parent.
- Any individual will therfore express two variants at most at each locus.
- This gives a maximum variability for an individual of:
- 6 different variants of MHC class I.
- 2 each of HLA- A, B and C.
- 6 different variants of MHC class II.
- 2 each of HLA- DP, DQ and DR.
- 6 different variants of MHC class I.
- This gives a maximum variability for an individual of:
- Many animal species have fewer loci than the human.
- E.g. ruminants have no MHC class II DP.
MHC and Disease
- Antigen from a pathogen has to be seen by the host MHC before an efficient immune response can occur.
- There is therefore a constant evolutionary battle between the host and the pathogen.
- There is selective pressure on the pathogen to evolve proteins that do not interact with the host MHC.
- There is selective pressure on the host to continue to recognize the pathogen.
- There is therefore a constant evolutionary battle between the host and the pathogen.
- The consequence of this parallel evolution is that host-pathogen relationships can lead to the selection of particular MHC variants, for example:
- MHC class II alleles DR13/DR1*1301 are prevalent in Central and Western Africa .
- Impart resistance to malaria.
- MHC-DRB1 is prevalent in Western Europe, but rare in the Inuit populations of North America.
- Associated with the clearance of hepatitis B infection in Western Europe.
- Inuits have the highest incidence of hepatitis B in the world.
- In humans there are also strong associations between certain alleles and some autoimmune diseases, for example:
- Diabetes mellitus.
- Ankylosing spondylitis.
- Rheumatoid arthritis.
- MHC class II alleles DR13/DR1*1301 are prevalent in Central and Western Africa .