35 bytes added ,  13:47, 4 January 2011
no edit summary
Line 14: Line 14:  
3. '''K<sup>+</sup>'''
 
3. '''K<sup>+</sup>'''
   −
The release of aldosterone is inhibited by '''Atrial Natriuretic Peptide'''.  
+
The release of aldosterone is inhibited by '''[[Atrial Natriuretic Peptide]] (ANP)'''.  
    
Most increases in the concentration of aldosterone can be explained by increases in the [[Renin Angiotensin Aldosterone System|'''Renin-Angiotensin-Aldosterone System''']] and therefore, angiotensin 2 and/or by increases in K<sup>+</sup> concentration. ACTH only significantly stimulates the release of aldosterone during severe fluid loss. ANP is secreted in response to sodium/water loading and therefore inhibits aldosterone secretion.
 
Most increases in the concentration of aldosterone can be explained by increases in the [[Renin Angiotensin Aldosterone System|'''Renin-Angiotensin-Aldosterone System''']] and therefore, angiotensin 2 and/or by increases in K<sup>+</sup> concentration. ACTH only significantly stimulates the release of aldosterone during severe fluid loss. ANP is secreted in response to sodium/water loading and therefore inhibits aldosterone secretion.
Line 24: Line 24:  
===Sodium===
 
===Sodium===
   −
Aldosterone affects sodium entry and transport. It increases the number of apical sodium channels, NaCl co-transporters and Na<sup>+</sup>K<sup>+</sup>ATPase. It also increases the activity of the hydrogen sodium exchanger in the apical membrane and increases membrane permeability and the sodium pump activity. When sodium is reabsorbed, water follows it so the volume of the plasma is altered rather than the concentration of the sodium changing. I.e. '''angiotensin 2''' and '''aldosterone''' affect sodium, but they also affect the ECF volume, so only the quantity is affected, not the concentration.
+
Aldosterone affects sodium entry and transport. It increases the number of apical sodium channels, NaCl co-transporters and Na<sup>+</sup>K<sup>+</sup>ATPase. It also increases the activity of the hydrogen sodium exchanger in the apical membrane and increases membrane permeability and the sodium pump activity. When sodium is reabsorbed, water follows it so the volume of the plasma is altered rather than the concentration of the sodium changing. I.e. '''angiotensin 2''' and '''aldosterone''' affect sodium, but they also affect the extra cellular fluid (ECF) volume, so only the quantity is affected, not the concentration.
   −
[[Pituitary Gland - Anatomy & Physiology #Posterior Pituitary Gland |ADH]] and the thirst response also work together to dilute the ECF if the concentrations of sodium is high. So although there is more NaCl, the actual concentration is not really changed. If there was no secretion of aldosterone, a 20kg dog would excrete 15g per 24 hours. At maximal secretion, no significant amount of sodium would be excreted.
+
[[Pituitary Gland - Anatomy & Physiology #Posterior Pituitary Gland |Antidiuretic hormone (ADH)]] and the thirst response also work together to dilute the ECF if the concentrations of sodium is high. So although there is more NaCl, the actual concentration is not really changed. If there was no secretion of aldosterone, a 20kg dog would excrete 15g per 24 hours. At maximal secretion, no significant amount of sodium would be excreted.
    
===Potassium===
 
===Potassium===
   −
Increased Na<sup>+</sup> / K<sup>+</sup> ATPase pump activity, increases the amount of K<sup>+</sup> in cells to reduce plasma K<sup>+</sup>. It is generally not excreted. However, if plasma K<sup>+</sup> is still, high aldosterone is stimulated. This causes potassium secretion and stimulates Na<sup>+</sup> / K<sup>+</sup> ATPases in the basolateral membrane of the principal cells. This results in increased potassium in the cells. Potassium then leaves via the apical leak channels , thanks to the electro-chemical gradient. This is a very tightly regulated system and allows large increase in K<sup>+</sup> to have a miniscule effect on plasma K<sup>+</sup>.
+
Increased Na<sup>+</sup> / K<sup>+</sup> ATPase pump activity, increases the amount of K<sup>+</sup> influx into cells to reduce plasma K<sup>+</sup>. Potassium is generally not excreted. However, if plasma K<sup>+</sup> is still, high aldosterone is stimulated. This causes potassium secretion and stimulates Na<sup>+</sup> / K<sup>+</sup> ATPases in the basolateral membrane of the principal cells. This results in increased potassium in the cells. Potassium then leaves via the apical leak channels , thanks to the electro-chemical gradient. This is a very tightly regulated system and allows large increase in K<sup>+</sup> to have a miniscule effect on plasma K<sup>+</sup>.
    
===Hydrogen===
 
===Hydrogen===
Line 41: Line 41:     
[[Category:Kidney Hormonal Regulators]][[Category:Endocrine System - Anatomy & Physiology]]
 
[[Category:Kidney Hormonal Regulators]][[Category:Endocrine System - Anatomy & Physiology]]
[[Category:To Do - AimeeHicks]][[Category:To Do - Review]]
+
[[Category:A&P Done]]
Author, Donkey, Bureaucrats, Administrators
53,803

edits