| <p>Oxygen independent killing uses lysosomes, cathepsin (a protease) and other mechanisms. Lysozymes are particularly effective against gram positive bacteria as they hydrolyse the glycopeptide coating of the bacterial organisms.</p> | | <p>Oxygen independent killing uses lysosomes, cathepsin (a protease) and other mechanisms. Lysozymes are particularly effective against gram positive bacteria as they hydrolyse the glycopeptide coating of the bacterial organisms.</p> |
− | This is the process of granule fusion with the plasma membrane, causing the release of the granule contents into the immediate vicinity. Contents can include vasoactive peptides, for example, histamine and bradykinin which, as their name suggests, activate the endothelium. This causes the endothelium to become more "leaky" causing a great increase in extravasation of blood granulocytes and monocytes, and the diffusion of plasma proteins to the site of infection. These peptides, released from other cells as well as neutrophils (e.g. [[Mast Cells|Mast cells]]), are responsible for the classical signs of inflammation: redness (rubor), heat (calor), swelling (tumor), and pain (dolor), often accompanied by loss of function. | + | This is the process of granule fusion with the plasma membrane, causing the release of the granule contents into the immediate vicinity. Contents can include vasoactive peptides, for example, histamine and bradykinin which, as their name suggests, activate the endothelium. This causes the endothelium to become more "leaky" causing a great increase in extravasation of blood granulocytes and monocytes, and the diffusion of plasma proteins to the site of infection. These peptides, released from other cells as well as neutrophils (e.g. [[Mast Cells|Mast cells]]), are responsible for the classical signs of inflammation: redness ('''rubor'''), heat ('''calor'''), swelling ('''tumor'''), and pain ('''dolor'''), often accompanied by loss of function. |