Line 53: Line 53:  
There are no gross lesions noted in aborted or stillborn fetuses, but histopathology inconsistently reveals interstitial pneumonia, myocarditis and pulmonary arteritis. However, these changes are neither specific nor diagnostic for PRRS.
 
There are no gross lesions noted in aborted or stillborn fetuses, but histopathology inconsistently reveals interstitial pneumonia, myocarditis and pulmonary arteritis. However, these changes are neither specific nor diagnostic for PRRS.
   −
==Control==
+
==Treatment and Control==
Currently, there are no effective treatment programs for acute PRRS. Attempts to reduce fever using NSAID (aspirin) or appetite stimulants (B vitamins) appear to have minimal benefit. The use of antibiotics or autogenous bacterins to reduce the effects of opportunistic bacterial pathogens have also been reported; however, results have been mixed.
+
 
Prevention of infection appears to be the primary means of control. Understanding the PRRS status of replacement gilts and boars, as well as proper isolation and acclimatization of incoming stock are critical measures to prevent viral introduction. Pigs should be retested on arrival at the isolation facility and 45-60 days later, before entry to the herd. Elimination of existing infection by multisite production and segregated early weaning has also been described. While these strategies have had some success, the longterm risks of reinfection appear high. Prevention of viral spread by nursery depopulation has been described. This is successful when virus transmission is not occurring in the sow herd (usually 12-18 mo after initial outbreak), but the nurseries and growing/finishing pigs are still infected. All nursery pigs are removed from the farm to be finished elsewhere. The nurseries are then aggressively washed and disinfected and left empty for 7-14 days, after which they can be used normally. The technique has successfully eliminated PRRS virus from several herds, in which pigs have remained seronegative (for >1 yr) to market age, and production in the nurseries has improved, both in growth rate and mortality.
+
There is currently no known effective treatment for PRRS. Non-steoidal anti-inflammatory drugs have been used in an attempt to reduce fever, and appetite stimulants to counteract inappetance and poor weight gain. However, these appear to have minimal benefit. Antibiotics may be used to counteract secondary bacterial infections.
 +
 
 +
As treatment for PRRS is ineffective, prevention is very important. Bought-in stock and semen should be PRRS-free, and any animals joining the herd should be quantined on-site before being introduced to the cohort. Pigs should be tested on arrival to the unit, and again 45-60 days later before they join the main herd.
 +
Elimination of existing infection by multisite production and segregated early weaning has also been described. While these strategies have had some success, the longterm risks of reinfection appear high. Prevention of viral spread by nursery depopulation has been described. This is successful when virus transmission is not occurring in the sow herd (usually 12-18 mo after initial outbreak), but the nurseries and growing/finishing pigs are still infected. All nursery pigs are removed from the farm to be finished elsewhere. The nurseries are then aggressively washed and disinfected and left empty for 7-14 days, after which they can be used normally. The technique has successfully eliminated PRRS virus from several herds, in which pigs have remained seronegative (for >1 yr) to market age, and production in the nurseries has improved, both in growth rate and mortality.
 
Commercial vaccines, both modified live and killed, have been licensed and have been effective in controlling outbreaks and preventing economic losses.
 
Commercial vaccines, both modified live and killed, have been licensed and have been effective in controlling outbreaks and preventing economic losses.
 
Recently, eradication of PRRS has been demonstrated to be possible on an individual farm basis. Methods such as whole herd depopulation-repopulation, test and removal, and herd closure have been documented as effective methods for eliminating PRRS virus from endemically infected herds. Unfortunately, a number of eradication efforts have failed due to the introduction of new isolates through unidentifiable routes.
 
Recently, eradication of PRRS has been demonstrated to be possible on an individual farm basis. Methods such as whole herd depopulation-repopulation, test and removal, and herd closure have been documented as effective methods for eliminating PRRS virus from endemically infected herds. Unfortunately, a number of eradication efforts have failed due to the introduction of new isolates through unidentifiable routes.
6,502

edits