Changes

Jump to navigation Jump to search
1,202 bytes removed ,  10:25, 11 November 2019
Line 2: Line 2:  
==Introduction==
 
==Introduction==
 
The ear is a paired sensory organ, that is involved in both hearing and balance. For this reason, the ear is known as the vestibulocochlear organ.
 
The ear is a paired sensory organ, that is involved in both hearing and balance. For this reason, the ear is known as the vestibulocochlear organ.
      
==Structure==
 
==Structure==
[[Image:Sections of the Ear.jpg|thumb|right|150px|The Mammalian Ear - Copyright David Bainbridge]]
+
[[Image:Sections of the Ear.jpg|thumb|right|250px|The Mammalian Ear - Copyright David Bainbridge]]
 
Anatomically, the ear can be looked at in three parts:
 
Anatomically, the ear can be looked at in three parts:
   −
1. '''Outer ear''' - pinna and auditory canal
+
1. '''Outer ear''' - pinna and auditory canal down to the level of the tympanic membrane
    
2. '''Middle ear''' - contains the malleus, incus and stapes bones - known as the ossicles
 
2. '''Middle ear''' - contains the malleus, incus and stapes bones - known as the ossicles
Line 14: Line 13:  
3. '''Inner ear''' - contains the membranous and bony labyrinths, and the cochlea
 
3. '''Inner ear''' - contains the membranous and bony labyrinths, and the cochlea
    +
===Outer Ear===
 +
[[Image:Outer Ear.jpg|thumb|right|250px|Outer Ear - Copyright David Bainbridge]]
 +
The pinna consists of the '''auricular [[Cartilage - Anatomy & Physiology#Structure and Function of Cartilage|cartilage]]''', and skin which allows for flexibility and elasticity. The auricular cartilage is flared distally into a flattened cone shape, covered by skin on both sides - more tightly on the medial or concave side than the convex side.  The [[Hair - Anatomy & Physiology|hair]] covering on the convex side is usually similar to the rest of the body but the hair covering on the concave or medial aspect is variable.  There are also irregularities on the concave surface with ridges and prominences, the '''medial and lateral crus of the helix''' on the medial aspect of the opening of the external ear canal, opposite the rectangular '''tragus''' on the lateral aspect.
   −
===Outer Ear===
+
Proximally, the auricular cartilage is rolled into a funnel shape, known as the '''concha'''. The '''scutiform''' cartilage lies rostromedially in the lower ear canal and provides support.  The '''annular''' cartilage lies between the proximal horizontal ear canal and the bony '''acoustic process''' of the [[Skull and Facial Muscles - Anatomy & Physiology#Temporal Bone (os temporale)|tympanic bulla]], connected by ligaments.  The vertical ear canal lies in a rostroventral orientation before bending medially to become the horizontal canal.
[[Image:Outer Ear.jpg|thumb|right|150px|Outer Ear - Copyright David Bainbridge]]
  −
The pinna (or auricle) is defined as the outer projecting part of the ear, that is the part of the ear that can be seen. It consists of the auricular cartilage, surrounded by skin, which allows for flexibility and elasticity. The auricular cartilage connects to scutiform cartilage, which itself connects to annular cartilage, which allows for articulation. These cartilages fit into the bony passage of the ear canal - also called the external auditory meatus, which leads to the tympanic membrane. This is the deepest boundary of the outer ear.
      
The cartilage and bony process of the external ear and the tympanic membrane are covered by skin.  The skin of the normal ear has a thin stratified keratinising epidermis and a thin dermis containing adnexal structures – [[Hair - Anatomy & Physiology|hair follicles]], [[Skin - Anatomy & Physiology#Glands|sebaceous and apocrine glands]].  The density of hair follicles on the concave pinna is variable, as is the density and distribution of hair follicles in the ear canal itself.  Some species are devoid of hair in the lower (proximal) ear canal (eg horse); hair follicle density in the dog is variable – usually simple but in some breeds compound hair follicles.
 
The cartilage and bony process of the external ear and the tympanic membrane are covered by skin.  The skin of the normal ear has a thin stratified keratinising epidermis and a thin dermis containing adnexal structures – [[Hair - Anatomy & Physiology|hair follicles]], [[Skin - Anatomy & Physiology#Glands|sebaceous and apocrine glands]].  The density of hair follicles on the concave pinna is variable, as is the density and distribution of hair follicles in the ear canal itself.  Some species are devoid of hair in the lower (proximal) ear canal (eg horse); hair follicle density in the dog is variable – usually simple but in some breeds compound hair follicles.
Line 54: Line 54:  
|}
 
|}
 
[[image: Canine Auricular Cartilages.jpg|thumb|250px|right|The auricular cartilages of the left canine ear. Image by Rachael Wallace]]
 
[[image: Canine Auricular Cartilages.jpg|thumb|250px|right|The auricular cartilages of the left canine ear. Image by Rachael Wallace]]
  −
  −
This includes the '''pinna''' and the '''ear canal''' (''external auditory meatus'') down to the level of the '''tympanic membrane'''.
  −
  −
The pinna comprises the '''auricular [[Cartilage - Anatomy & Physiology#Structure and Function of Cartilage|cartilage]]''', which is flared distally into a flattened cone shape, covered by skin on both sides - more tightly on the medial or concave side than the convex side.  The [[Hair - Anatomy & Physiology|hair]] covering on the convex side is usually similar to the rest of the body but the hair covering on the concave or medial aspect is variable.  There are also irregularities on the concave surface with ridges and prominences, the '''medial and lateral crus of the helix''' on the medial aspect of the opening of the external ear canal, opposite the rectangular '''tragus''' on the lateral aspect.
  −
  −
Proximally, the auricular cartilage is rolled into a funnel shape, known as the '''concha'''.  The '''scutiform''' cartilage lies rostromedially in the lower ear canal and provides support.  The '''annular''' cartilage lies between the proximal horizontal ear canal and the bony '''acoustic process''' of the [[Skull and Facial Muscles - Anatomy & Physiology#Temporal Bone (os temporale)|typmanic bulla]], connected by ligaments.  The vertical ear canal lies in a rostroventral orientation before bending medially to become the horizontal canal.
  −
      
===Microclimate of the Ear Canal===
 
===Microclimate of the Ear Canal===
Line 67: Line 59:     
'''Otitis externa''' is associated with an increase in temperature, relative humidity and a rise in pH within the external ear canal. The nature of the secretions alters, with a decrease in the lipid content of cerumen.
 
'''Otitis externa''' is associated with an increase in temperature, relative humidity and a rise in pH within the external ear canal. The nature of the secretions alters, with a decrease in the lipid content of cerumen.
      
===Glands of the Ear Canal===
 
===Glands of the Ear Canal===
Line 74: Line 65:  
The epithelial cells in the [[Skin - Anatomy & Physiology#Epidermis|stratum granulosum]] of the tympanic membrane migrate centripetally, and this migration comprises the natural cleaning mechanism keeping the tympanum free of debris.  The upward/distal migration of epithelial cells clears desquamated cells, secretions, debris and microbes. The more aqueous secretions of the ceruminous glands, present proximally, allow easier upward migration, whereas the higher lipid content of the distal secretions offers better barrier protection.
 
The epithelial cells in the [[Skin - Anatomy & Physiology#Epidermis|stratum granulosum]] of the tympanic membrane migrate centripetally, and this migration comprises the natural cleaning mechanism keeping the tympanum free of debris.  The upward/distal migration of epithelial cells clears desquamated cells, secretions, debris and microbes. The more aqueous secretions of the ceruminous glands, present proximally, allow easier upward migration, whereas the higher lipid content of the distal secretions offers better barrier protection.
   −
 
+
===Structures Surrounding the Ear===
===Structures surrounding the Ear===
      
In the tissues medial to the ear canal lie the auricular and superficial temporal arteries.  Laterally is the '''parotid salivary gland''' and also a branch of the [[Cranial Nerves - Anatomy & Physiology|facial nerve]], external maxillary vein and branches of the external carotid artery.  The facial nerve exits the skull through the stylomastoid foramen behind the osseous bulla; it passes below the rostroventral aspect of the horizontal ear canal.  The '''auriculo-temporal''' branch of the mandibular portion of the [[Cranial Nerves - Anatomy & Physiology|trigeminal nerve]] (CN V) and branches of the facial nerve pass rostral to the vertical ear canal.
 
In the tissues medial to the ear canal lie the auricular and superficial temporal arteries.  Laterally is the '''parotid salivary gland''' and also a branch of the [[Cranial Nerves - Anatomy & Physiology|facial nerve]], external maxillary vein and branches of the external carotid artery.  The facial nerve exits the skull through the stylomastoid foramen behind the osseous bulla; it passes below the rostroventral aspect of the horizontal ear canal.  The '''auriculo-temporal''' branch of the mandibular portion of the [[Cranial Nerves - Anatomy & Physiology|trigeminal nerve]] (CN V) and branches of the facial nerve pass rostral to the vertical ear canal.
   −
 
+
===The Tympanic Membrane===
<big>'''The Tympanic Membrane'''</big>
      
This epithelial structure separates the external from the middle ear.  Below the stratified keratinising outer epithelium is a connective tissue lamina propria, with a cuboidal mucosal epithelium on the inner surface.  The tympanic membrane is divided into the '''pars flaccid''' dorsorostrally, which lies next to the '''manubrium of the malleus''', and the '''pars tensa''' ventrally.  The C-shaped manubrium inserts into the '''lamina propria''', extending towards the middle of the pars tensa.  Foreign bodies and other damage (severe otitis externa, ascending pathology from middle ear) can result in rupture of the tympanic membrane in the pars tensa region.    Defects of the tympanic membrane heal by epithelial migration bridging over the defect, then development of a granulation bed below.
 
This epithelial structure separates the external from the middle ear.  Below the stratified keratinising outer epithelium is a connective tissue lamina propria, with a cuboidal mucosal epithelium on the inner surface.  The tympanic membrane is divided into the '''pars flaccid''' dorsorostrally, which lies next to the '''manubrium of the malleus''', and the '''pars tensa''' ventrally.  The C-shaped manubrium inserts into the '''lamina propria''', extending towards the middle of the pars tensa.  Foreign bodies and other damage (severe otitis externa, ascending pathology from middle ear) can result in rupture of the tympanic membrane in the pars tensa region.    Defects of the tympanic membrane heal by epithelial migration bridging over the defect, then development of a granulation bed below.
  −
      
===Middle Ear===
 
===Middle Ear===
[[Image:Middle Ear.jpg|thumb|right|150px|Middle Ear - Copyright David Bainbridge]]
+
[[Image:Middle Ear.jpg|thumb|right|250px|Middle Ear - Copyright David Bainbridge]]
 
*The middle ear consists of the tympanic cavity, the auditory ossicles and the eustachian tube. The boundary between the middle and inner ear is the oval window.
 
*The middle ear consists of the tympanic cavity, the auditory ossicles and the eustachian tube. The boundary between the middle and inner ear is the oval window.
 
*The auditory ossicles are attached to the wall of the tympanic cavity by many ligaments and mucosal folds.
 
*The auditory ossicles are attached to the wall of the tympanic cavity by many ligaments and mucosal folds.
 
*The tympanic cavity is located within the petrous temporal bone, and can be divided into dorsal, middle and ventral parts:
 
*The tympanic cavity is located within the petrous temporal bone, and can be divided into dorsal, middle and ventral parts:
   −
- ''Dorsal'': contains the auditory ossicles
     −
- ''Middle'': contians the tympanic membrane within its lateral wall, and opens rostrally into the nasopharynx via the eustachian tube
+
- ''Dorsal'': or '''epitympanum''', conatining 2 of the auditory ossicles – the '''malleus''' and '''incus'''
 +
 
 +
- ''Middle'': or '''mesotympanum''' bounded by the tympanic membrane laterally and containing the third auditory ossicle, '''stapes''', attached to the oval window. It opens rostrally into the nasopharynx via the eustachian tube
 +
 
 +
- ''Ventral'': or '''hypotympanum''', or fundic cavity, which is the largest compartment. It is housed by the tympanic bulla which is a thin-walled, bulbous expansion of the temporal bone.
   −
- ''Ventral'': the tympanic bulla - a thin-walled, bulbous expansion of the temporal bone, which houses an extension of the tympanic cavity
      
*The oval window is positioned rostrodorsally, to which one end of the stapes is attached by an annular ligament. It functions to connect the tympanic cavity with the inner ear.
 
*The oval window is positioned rostrodorsally, to which one end of the stapes is attached by an annular ligament. It functions to connect the tympanic cavity with the inner ear.
*The round window is positioned more caudally, and leads to the cavity of the cochlea.
+
*The round window is positioned more caudally, and leads to the cavity of the cochlea. The '''round window''' is on the caudomedial aspect of the mesotympanum and the opening of the auditory '''(Eustachian)''' tube opens on rostromedial aspect of the mesotympanum.
 
*Sound vibrations are transmitted from the tympanic membrane, across the tympanic cavity, via the ossicles (malleus, incus, then stapes).
 
*Sound vibrations are transmitted from the tympanic membrane, across the tympanic cavity, via the ossicles (malleus, incus, then stapes).
 
*The ossicles, as well as transmitting sound vibrations from the tympanic membrane, also magnify the vibrations by about 20 times. This is necessary for initiating waves in the endolymph of the cochlea. The magnification is achieved by the action of two muscles that are attached to the ossicles, and which act as antagonists of each other. These two muscles are the tensor tympani muscle and the stapedius muscle. The tensor tympani muscle originates within the tympanic cavity, and inserts on the malleus. The contraction of this muscle creates tension of the ossicles, and therefore also of the tympanic membrane, all of which results in greater sensitivity. The stapedius muscle originates from the wall of the tympanic cavity, and inserts on the stapes. Contraction of this muscle pulls the end of the stapes away from the oval window, thereby reducing the force of the transmission of sound vibrations.
 
*The ossicles, as well as transmitting sound vibrations from the tympanic membrane, also magnify the vibrations by about 20 times. This is necessary for initiating waves in the endolymph of the cochlea. The magnification is achieved by the action of two muscles that are attached to the ossicles, and which act as antagonists of each other. These two muscles are the tensor tympani muscle and the stapedius muscle. The tensor tympani muscle originates within the tympanic cavity, and inserts on the malleus. The contraction of this muscle creates tension of the ossicles, and therefore also of the tympanic membrane, all of which results in greater sensitivity. The stapedius muscle originates from the wall of the tympanic cavity, and inserts on the stapes. Contraction of this muscle pulls the end of the stapes away from the oval window, thereby reducing the force of the transmission of sound vibrations.
   
*The eustachian tube connects the tympanic cavity to the nasopharynx.
 
*The eustachian tube connects the tympanic cavity to the nasopharynx.
 
*The eustachian tube functions to equalise pressure on either side of the tympanic cavity, by opening while yawning or swallowing, for example.
 
*The eustachian tube functions to equalise pressure on either side of the tympanic cavity, by opening while yawning or swallowing, for example.
  −
The middle ear comprises the '''tympanic cavity''' bounded by the walls of the '''tympanic bulla''' and the '''medial tympanic membrane'''.
      
[[image: Canine Ear Canal.jpg|thumb|250px|right|The Canine Middle Ear]]
 
[[image: Canine Ear Canal.jpg|thumb|250px|right|The Canine Middle Ear]]
   −
It has 3 compartments,  the smallest dorsal or '''epitympanum''', conatining 2 of the auditory ossicles – the '''malleus''' and '''incus'''; the middle or '''mesotympanum''' bounded by the tympanic membrane laterally and containing the third auditory ossicle, '''stapes''', attached to the oval window and the ventral, '''hypotympamum''', or fundic cavity, which is the largest compartment.  The auditory ossicles are supported by ligaments and muscles, which alter their position and influences the tension of the tympanic membrane.  The ratio of the malleus:incus in dogs and cats is 2-3 times that of man, and may explain the increased acuity of hearing.  The '''round window''' is on the caudomedial aspect of the mesotympanum and the opening of the auditory '''(Eustachian)''' tube opens on rostromedial aspect of the mesotympanum.  Opposite the lateral tympanic membrane on the medial aspect of the cavity is a bony promontory.  Associated structures close to or in channels in the wall of the tympanic cavity (bulla) are the '''facial nerve''', '''vagus nerve''' and branches of the '''carotid and lingual arteries'''.  Post-ganglionic fibres of the '''cervical sympathetic trunk''' run in the region of the dorsomedial wall of the tympanic cavity.
+
The auditory ossicles are supported by ligaments and muscles, which alter their position and influences the tension of the tympanic membrane.  The ratio of the malleus:incus in dogs and cats is 2-3 times that of man, and may explain the increased acuity of hearing.  Opposite the lateral tympanic membrane on the medial aspect of the cavity is a bony promontory.  Associated structures close to or in channels in the wall of the tympanic cavity (bulla) are the '''facial nerve''', '''vagus nerve''' and branches of the '''carotid and lingual arteries'''.  Post-ganglionic fibres of the '''cervical sympathetic trunk''' run in the region of the dorsomedial wall of the tympanic cavity.
    
The feline middle ear has an incomplete '''bony septum''' dividing the ventral chamber into a large ventromedial and small dorsolateral chamber, communicating caudomedially.
 
The feline middle ear has an incomplete '''bony septum''' dividing the ventral chamber into a large ventromedial and small dorsolateral chamber, communicating caudomedially.
Line 117: Line 103:     
===Inner Ear===
 
===Inner Ear===
[[Image:Inner, Membranous Labyrinth.jpg|thumb|right|150px|Inner, Membranous Labyrinth - Copyright David Bainbridge]]
+
[[Image:Inner, Membranous Labyrinth.jpg|thumb|right|250px|Inner, Membranous Labyrinth - Copyright David Bainbridge]]
 
+
[[Image:Outer, Bony Labyrinth.jpg|thumb|right|250px|Outer, Bony Labyrinth - Copyright David Bainbridge]]
[[Image:Outer, Bony Labyrinth.jpg|thumb|right|150px|Outer, Bony Labyrinth - Copyright David Bainbridge]]
+
[[Image:Section through a Cochlear Turn.jpg|thumb|right|250px|Section through a Cochlear Turn - Copyright David Bainbridge]]
 
  −
[[Image:Section through a Cochlear Turn.jpg|thumb|right|150px|Section through a Cochlear Turn - Copyright David Bainbridge]]
   
*The inner ear is located within the petrous temporal bone.
 
*The inner ear is located within the petrous temporal bone.
 
*The inner ear contains the membranous labyrinth, which is surrounded by the bony labyrinth.
 
*The inner ear contains the membranous labyrinth, which is surrounded by the bony labyrinth.
Line 144: Line 128:     
- ''Cochlea'': forms a spiral around a central hollow core of bone, called the modiolus,which contains the cochlear nerve. The spiral lamina projects into the spiral canal, partially bisecting the lumen into two parts, which are called the scala tympani and the scala vestibuli. The scala media (the cochlear duct) is inbetween these two parts.
 
- ''Cochlea'': forms a spiral around a central hollow core of bone, called the modiolus,which contains the cochlear nerve. The spiral lamina projects into the spiral canal, partially bisecting the lumen into two parts, which are called the scala tympani and the scala vestibuli. The scala media (the cochlear duct) is inbetween these two parts.
  −
The inner ear contains the '''cochlea''', '''vestibule''' and '''semicircular canals''' in the bony labyrinth of the '''petrous temporal bone'''.  These organs are responsible for the function of hearing and positional and gravitational relationships of the head at rest and during movement.
      
==Function - Hearing==
 
==Function - Hearing==
      
The main function of the ear is to recieve auditory and vestibular input.
 
The main function of the ear is to recieve auditory and vestibular input.
Line 154: Line 135:     
The external ear receives sounds, which cause vibrations of the tympanic membrane. These vibrations move along the ossicles of the middle ear, to be transmitted to the inner ear. The stapes is connected to the oval window, so when the stapes transmits vibrations, this causes movement of perilymph that is in the inner ear. The movement of the perilymph is transmitted via the scala vestibuli and the scala tympani, to the round window, where it induces movement of the secondary tympanic membrane. This results in the movement of the endolymph of the cochlear duct,  causing pressure on the tectorial membrane, which then induces pressure on the sensory hairs, stimulating the receptor cells within the cochlear duct to send impulses to the spiral ganglion. The axons of the spiral ganglion form part of the vestibulocochlear nerve.
 
The external ear receives sounds, which cause vibrations of the tympanic membrane. These vibrations move along the ossicles of the middle ear, to be transmitted to the inner ear. The stapes is connected to the oval window, so when the stapes transmits vibrations, this causes movement of perilymph that is in the inner ear. The movement of the perilymph is transmitted via the scala vestibuli and the scala tympani, to the round window, where it induces movement of the secondary tympanic membrane. This results in the movement of the endolymph of the cochlear duct,  causing pressure on the tectorial membrane, which then induces pressure on the sensory hairs, stimulating the receptor cells within the cochlear duct to send impulses to the spiral ganglion. The axons of the spiral ganglion form part of the vestibulocochlear nerve.
      
===The Outer and Middle Ear===
 
===The Outer and Middle Ear===
Line 163: Line 143:  
*Amplification due to the bony lever is only 1.5 times, as the stapedius muscle prevents the stapes from vibrating too much.
 
*Amplification due to the bony lever is only 1.5 times, as the stapedius muscle prevents the stapes from vibrating too much.
 
*The tympanic membrane is 20 times larger than the oval window.
 
*The tympanic membrane is 20 times larger than the oval window.
      
===The Cochlea===
 
===The Cochlea===
Line 170: Line 149:  
*Displacement of the basilar membrane during sound transmission is 200 times that of the tympanic membrane.
 
*Displacement of the basilar membrane during sound transmission is 200 times that of the tympanic membrane.
 
*This is due to the relative inertia of the tympanic membrane, so it remains relatively still as the basilar and hair cells move relative to it.
 
*This is due to the relative inertia of the tympanic membrane, so it remains relatively still as the basilar and hair cells move relative to it.
      
===The Hair Cell Receptor===
 
===The Hair Cell Receptor===
Line 188: Line 166:     
This shows that if the cilia is pushed in one direction, it will be excited, but if pushed in the other direction it will be inhibited.
 
This shows that if the cilia is pushed in one direction, it will be excited, but if pushed in the other direction it will be inhibited.
      
===Hair Cell Resting Potentials===
 
===Hair Cell Resting Potentials===
Line 194: Line 171:  
*Cilia are in endolymph, but hair cell body is in perilymph.
 
*Cilia are in endolymph, but hair cell body is in perilymph.
 
*There is a high concentration of potassium ions (K+) in endolymph, which is maintained by ion pumps in the stria vascularis.
 
*There is a high concentration of potassium ions (K+) in endolymph, which is maintained by ion pumps in the stria vascularis.
      
===Cochlear Microphonics===
 
===Cochlear Microphonics===
Line 201: Line 177:  
*Non-nervous: no latency, refractoriness, and persists after death.
 
*Non-nervous: no latency, refractoriness, and persists after death.
 
*Generated by hair cells.
 
*Generated by hair cells.
      
===Tone===
 
===Tone===
Line 213: Line 188:     
3. '''Phase Locking''': allows extremely fine discrimination of pitch within the musical range. The action potential occurs at a particular point in the sound wave. The brain can determine frequency information from this.
 
3. '''Phase Locking''': allows extremely fine discrimination of pitch within the musical range. The action potential occurs at a particular point in the sound wave. The brain can determine frequency information from this.
      
===Direction Discrimination===
 
===Direction Discrimination===
Line 230: Line 204:     
3. Head 'shadowing' of sound
 
3. Head 'shadowing' of sound
      
===Deafness===
 
===Deafness===
Line 236: Line 209:  
*'''Nerve Deafness''': hearing loss due to a lesion to the auditory nerve within the central neural pathway. May be congenital or genetic, for example in white cats with blue eyes or in dalmatians, a problem created due to highly selective in-breeding. Histological examinations carried out on the organ of Corti from affected dogs shows the absence of sensory cells. Nerve deafness may also be due to age.
 
*'''Nerve Deafness''': hearing loss due to a lesion to the auditory nerve within the central neural pathway. May be congenital or genetic, for example in white cats with blue eyes or in dalmatians, a problem created due to highly selective in-breeding. Histological examinations carried out on the organ of Corti from affected dogs shows the absence of sensory cells. Nerve deafness may also be due to age.
   −
 
+
===Central Auditory Pathways===
<big>'''Central Auditory Pathways'''</big>
+
[[Image:Central Auditory Pathway.jpg|thumb|right|250px|Central Auditory Pathway - Copyright David Bainbridge]]
 
  −
[[Image:Central Auditory Pathway.jpg|thumb|right|150px|Central Auditory Pathway - Copyright David Bainbridge]]
  −
 
   
*The signal that has been created from the sound waves that were picked up by the ear, is carried to the brain by the vestibulocochlear nerve ([[Cranial Nerves - Anatomy & Physiology|CN VIII]]), which synapses in the cochlear nucleus.
 
*The signal that has been created from the sound waves that were picked up by the ear, is carried to the brain by the vestibulocochlear nerve ([[Cranial Nerves - Anatomy & Physiology|CN VIII]]), which synapses in the cochlear nucleus.
 
*From here, the auditory information is then split.
 
*From here, the auditory information is then split.
Line 247: Line 217:  
*Both of the above pathways are bilateral. This means that if there is a lesion at any point along the pathway, it usually has no effect on hearing. Deafness is only usually caused if there is damage to either the auditory nerve, the cochlea, or the middle ear.
 
*Both of the above pathways are bilateral. This means that if there is a lesion at any point along the pathway, it usually has no effect on hearing. Deafness is only usually caused if there is damage to either the auditory nerve, the cochlea, or the middle ear.
 
*From the inferior colliculus, the information from both pathways is sent to the medial geniculate nucleus of the thalamus, which then leads on to the primary auditory cortex of the cerebral cortex.
 
*From the inferior colliculus, the information from both pathways is sent to the medial geniculate nucleus of the thalamus, which then leads on to the primary auditory cortex of the cerebral cortex.
      
==Function - Balance==
 
==Function - Balance==
[[Image:Vestibular Receptors and Balance.jpg|thumb|right|150px|Vestibular Receptors and Balance - Copyright David Bainbridge]]
+
[[Image:Vestibular Receptors and Balance.jpg|thumb|right|250px|Vestibular Receptors and Balance - Copyright David Bainbridge]]
    
*The vestibular sense is rather more unconscious than that of hearing.
 
*The vestibular sense is rather more unconscious than that of hearing.
Line 260: Line 229:  
*Otoliths are denser than endolymph - they are calcareous and crystalline. They are contained within the maculae, and detect gravity and linear acceleration. Linear acceleration is the detection of motion along a line, for example when you lean to one side.
 
*Otoliths are denser than endolymph - they are calcareous and crystalline. They are contained within the maculae, and detect gravity and linear acceleration. Linear acceleration is the detection of motion along a line, for example when you lean to one side.
 
*Movement of the sensory hair cells triggers impulses, which are carried by the vestibular portion of the vestibulocochlear nerve ([[Cranial Nerves - Anatomy & Physiology|CN VIII]]).
 
*Movement of the sensory hair cells triggers impulses, which are carried by the vestibular portion of the vestibulocochlear nerve ([[Cranial Nerves - Anatomy & Physiology|CN VIII]]).
      
===Unilateral Vestibular Signs===
 
===Unilateral Vestibular Signs===
[[Image:Unilateral Vestibular Signs.jpg|thumb|right|150px|Unilateral Vestibular Signs - Copyright David Bainbridge]]
+
[[Image:Unilateral Vestibular Signs.jpg|thumb|right|250px|Unilateral Vestibular Signs - Copyright David Bainbridge]]
 
*The vestibular system is a common site for pathology. Brain infection, tumours and inflammation are often shown up by vestibular signs. These signs may include:
 
*The vestibular system is a common site for pathology. Brain infection, tumours and inflammation are often shown up by vestibular signs. These signs may include:
   Line 276: Line 244:  
5. ''Nystagmus with slow phase to lesion'' - nystagmus is rapid, involuntary, oscillatory motion of the eyeball in any direction, and can be caused by a lack of coordination
 
5. ''Nystagmus with slow phase to lesion'' - nystagmus is rapid, involuntary, oscillatory motion of the eyeball in any direction, and can be caused by a lack of coordination
   −
 
+
===Central Vestibular Pathways===
<big>'''Central Vestibular Pathways'''</big>
+
[[Image:Central Vestibular Pathways.jpg|thumb|right|250px|Central Vestibular Pathways - Copyright David Bainbridge]]
[[Image:Central Vestibular Pathways.jpg|thumb|right|150px|Central Vestibular Pathways - Copyright David Bainbridge]]
   
*The sensory hair cells produce signals, which are carried by the vestibulocochlear nerve ([[Cranial Nerves - Anatomy & Physiology|CN VIII]]) first of all through the bipolar vestibular ganglion cells.
 
*The sensory hair cells produce signals, which are carried by the vestibulocochlear nerve ([[Cranial Nerves - Anatomy & Physiology|CN VIII]]) first of all through the bipolar vestibular ganglion cells.
 
*Most nerve fibres that have come from the hair cells terminate in the vestibular nuclei, which are located in the fourth ventricle of the cerebral cortex.
 
*Most nerve fibres that have come from the hair cells terminate in the vestibular nuclei, which are located in the fourth ventricle of the cerebral cortex.
 
*After entering the vestibular nuclei, some of the processes of the nerve fibres divide into ascending and descending branches. Some processes pass directly into the cerebellum.
 
*After entering the vestibular nuclei, some of the processes of the nerve fibres divide into ascending and descending branches. Some processes pass directly into the cerebellum.
    +
==Vasculature==
 +
*The medial, intermediate and lateral auricular rami supply the outer ear, all of which are branches of the great auricular artery, which itself is a branch of the external carotid artery. Venous drainage is via satellite veins to the '''internal maxillary veins'''.
   −
==Vasculature==
  −
*The medial, intermediate and lateral auricular rami supply the outer ear, all of which are branches of the great auricular artery, which itself is a branch of the external carotid artery.
   
*The tympanic membrane is highly vascularised.
 
*The tympanic membrane is highly vascularised.
  −
The vascular supply to the outer ear is provided by the '''great auricular arteries''' (ex internal carotid artery).  Venous drainage is via satellite veins to the '''internal maxillary veins'''.
  −
      
==Innervation==
 
==Innervation==
 
Sensory innervation to the outer ear:
 
Sensory innervation to the outer ear:
 
*Ce2 (second cervical spinal nerve) to medial pinna
 
*Ce2 (second cervical spinal nerve) to medial pinna
*Auriculopalpebral branch of trigeminal nerve ([[Cranial Nerves - Anatomy & Physiology|CN V]]) to most of the lateral pinna
+
*Auriculopalpebral branch of facial nerve ([[Cranial Nerves - Anatomy & Physiology|CN VII]]) to most of the lateral pinna
 
*Facial ([[Cranial Nerves - Anatomy & Physiology|CN VII]]) and vagus nerves ([[Cranial Nerves - Anatomy & Physiology|CN X]]) via small auricular branches to pinna
 
*Facial ([[Cranial Nerves - Anatomy & Physiology|CN VII]]) and vagus nerves ([[Cranial Nerves - Anatomy & Physiology|CN X]]) via small auricular branches to pinna
   Line 302: Line 266:  
*The tensor tympani muscle is innervated by the pterygoid nerve, which is a branch of the mandibular nerve, itself being the third branch of the trigeminal nerve ([[Cranial Nerves - Anatomy & Physiology|CN V]]).
 
*The tensor tympani muscle is innervated by the pterygoid nerve, which is a branch of the mandibular nerve, itself being the third branch of the trigeminal nerve ([[Cranial Nerves - Anatomy & Physiology|CN V]]).
 
*The stapedius muscle is innervated by the facial nerve ([[Cranial Nerves - Anatomy & Physiology|CN VII]]).
 
*The stapedius muscle is innervated by the facial nerve ([[Cranial Nerves - Anatomy & Physiology|CN VII]]).
  −
Innervation is provided by the '''auriculopalpebral branches of cranial nerve VII''' to the auricular muscles and sensory supply by cervical nerve II and cranial nerve V.
  −
      
==Histology==
 
==Histology==
[[Image:Section through Cochlea - Histology.jpg|thumb|right|150px|Section through Cochlea - Copyright David Bainbridge]]
+
[[Image:Section through Cochlea - Histology.jpg|thumb|right|250px|Section through Cochlea - Copyright David Bainbridge]]
 
*'''Tympanic Membrane''': the outer surface is lined with an epithelium that is continuous with that of the external acoustic meatus. The inner surface is lined by the mucosa that lines the tympanic cavity. This inner mucosal layer is made up of simple squamous epithelium.
 
*'''Tympanic Membrane''': the outer surface is lined with an epithelium that is continuous with that of the external acoustic meatus. The inner surface is lined by the mucosa that lines the tympanic cavity. This inner mucosal layer is made up of simple squamous epithelium.
 
*'''Tympanic Cavity''': lined by a single-layer of epithelium, and the underlying soft tissue has a rich vascular and nervous supply. The single-layered epithelium also covers the ossicles and the tympanic membrane.
 
*'''Tympanic Cavity''': lined by a single-layer of epithelium, and the underlying soft tissue has a rich vascular and nervous supply. The single-layered epithelium also covers the ossicles and the tympanic membrane.
 
*'''Saccule''' and '''Utricle''': lined by simple squamous epithelium, underneath which is a layer of loose connective tissue.
 
*'''Saccule''' and '''Utricle''': lined by simple squamous epithelium, underneath which is a layer of loose connective tissue.
 
*The connective tissue component of the '''organ of Corti''' is the basilar lamina.
 
*The connective tissue component of the '''organ of Corti''' is the basilar lamina.
      
==Species Differences==
 
==Species Differences==
 
+
[[Image: Rabbit ears.jpg|thumb|250px|right|Two rabbits: one with wild-type erect pinnae, the other with pendulous pinnae for comparison]]
* The functional shape of the pinna in wild-type mammals is erect, and the muscular connections at the base of the pinna allowing positional adjustments to efficiently collect sound.  Many domesticated species, however, have non-erect, pendulous pinnae, as a result of selective breeding.  This and other conformational changes may contribute to aural disease, particularly in the dog, but also other species including the lop-eared rabbit
+
* The functional shape of the pinna in wild-type mammals is erect, and the muscular connections at the base of the pinna allowing positional adjustments to efficiently collect sound.  Many domesticated species, however, have non-erect, pendulous pinnae, as a result of selective breeding.  This and other conformational changes may contribute to aural disease, particularly in the dog, but also other species including the lop-eared rabbit.
    
*'''The Cochlea''': the spiral has 3 turns in carnivores, 2.5 turns in horses, 4 turns in the pig, and 3.5 turns in ruminants.
 
*'''The Cochlea''': the spiral has 3 turns in carnivores, 2.5 turns in horses, 4 turns in the pig, and 3.5 turns in ruminants.
Line 322: Line 282:  
*'''Fish''': to detect high frequency sound, some fish use the swim bladder as an acoustic detecror. It is connected to the '''lagena''' (the stumpy piscine cochlea) by three ''Weberian'' bones. These are derived from vertebrae.
 
*'''Fish''': to detect high frequency sound, some fish use the swim bladder as an acoustic detecror. It is connected to the '''lagena''' (the stumpy piscine cochlea) by three ''Weberian'' bones. These are derived from vertebrae.
   −
* The [[Guttural Pouches - Anatomy & Physiology|guttural pouch]] is an anatomical structure that is only found in the horse and other perissodactyla.[[Image:Equine Guttural Pouch.jpg|thumb|right|150px|Equine Guttural Pouch - Copyright David Bainbridge]]
+
* The [[Guttural Pouches - Anatomy & Physiology|guttural pouch]] is an anatomical structure that is only found in the horse and other perissodactyla.
 
  −
[[image: Rabbit ears.jpg|thumb|250px|left|Two rabbits: one with wild-type erect pinnae, the other with pendulous pinnae for comparison]]
      +
==Recommended Reading==
 +
-Miller's Anatomy of the Dog, 4th edition, Evans and de Lahunta, Chapter 20, pages 731-745
    +
-Veterinary Anatomy of Domestic Mammals, 3rd edition, König and Liebich, Chapter 17, pages 593-608
       
<br>
 
<br>
 
{{Learning
 
{{Learning
|flashcards = [[Facial_Muscles_-_Musculoskeletal_-_Flashcards|Facial Muscles Flashcards]]<br>[[Ear flashcards - Anatomy & Physiology|Ear Flashcards]]<br>[[Feather flashcards - Anatomy & Physiology|Feather Flashcards]]
+
|flashcards = [[Ear flashcards - Anatomy & Physiology|Ear Flashcards]]
 +
|OVAM = [http://www.onlineveterinaryanatomy.net/content/special-senses-imaging-quiz Special Senses Imaging Quiz - University of Glasgow]<br>
 +
[http://www.onlineveterinaryanatomy.net/content/interactive-avian-anatomy-ear-0 Interactive Avian Anatomy of the Ear - University of Murcia]<br>
 +
|Vetstream = [https://www.vetstream.com/canis/Content/Disease/dis02287.asp Otitis interna]
 
}}
 
}}
  −
   
{{OpenPages}}
 
{{OpenPages}}
    
[[Category:Special Senses - Anatomy & Physiology]]
 
[[Category:Special Senses - Anatomy & Physiology]]

Navigation menu