Changes

Jump to navigation Jump to search
Line 15: Line 15:  
==CSF Circulation==
 
==CSF Circulation==
 
Once produced, CSF is then circulated from the choroid plexus through the interventricular foramina into the 3rd ventricle, and then through the cerebral aqueduct (aqueduct of Sylvius) into the 4th ventricle before flowing through the cerebromedullary cistern down the spinal cord and over the cerebral hemispheres. Most CSF escapes from the ventricular system at the hindbrain foramen of Luschka. CSF then flows down the length of the spinal cord in the subarachnoid space. Large amounts are drained into venous sinuses through arachnoid granulations in the dorsal sagittal sinus. Arachnoid granulations contain many villi that are able to act as a one way valve helping to regulate pressure within the CSF.
 
Once produced, CSF is then circulated from the choroid plexus through the interventricular foramina into the 3rd ventricle, and then through the cerebral aqueduct (aqueduct of Sylvius) into the 4th ventricle before flowing through the cerebromedullary cistern down the spinal cord and over the cerebral hemispheres. Most CSF escapes from the ventricular system at the hindbrain foramen of Luschka. CSF then flows down the length of the spinal cord in the subarachnoid space. Large amounts are drained into venous sinuses through arachnoid granulations in the dorsal sagittal sinus. Arachnoid granulations contain many villi that are able to act as a one way valve helping to regulate pressure within the CSF.
 +
<br />
 +
<br />
 +
Any disruption to this flow can result in increased pressure building up within parts of the CSF system which can cause compression of neural structures surrounding the area of increased pressure. Clinical examples of this are hydrocephalus and syringohydromyelia.
     
6,273

edits

Navigation menu