In many neuronal synapses, not only do the post-synaptic membranes contain receptors for neurotransmitters, they also contain ion channels. In many cases the neurotransmitter receptors and ion channels are directly linked giving rise to '''ionotropic receptors'''. When a neurotransmitter binds it's relevant receptor, this also may open affect the gating of adjacent ion channels, either opening or closing the channel. Ionotrophic receptors such as this are responsible for the fastest type of synaptic transmission. An example of an ionotrophic receptor is '''zinc''' which is synaptically released via this mechanism. | In many neuronal synapses, not only do the post-synaptic membranes contain receptors for neurotransmitters, they also contain ion channels. In many cases the neurotransmitter receptors and ion channels are directly linked giving rise to '''ionotropic receptors'''. When a neurotransmitter binds it's relevant receptor, this also may open affect the gating of adjacent ion channels, either opening or closing the channel. Ionotrophic receptors such as this are responsible for the fastest type of synaptic transmission. An example of an ionotrophic receptor is '''zinc''' which is synaptically released via this mechanism. |