Changes

Jump to navigation Jump to search
m
Line 216: Line 216:  
*Otoliths are denser than endolymph - they are calcareous and crystalline. They are contained within the maculae, and detect gravity and linear acceleration. Linear acceleration is the detection of motion along a line, for example when you lean to one side.
 
*Otoliths are denser than endolymph - they are calcareous and crystalline. They are contained within the maculae, and detect gravity and linear acceleration. Linear acceleration is the detection of motion along a line, for example when you lean to one side.
 
*Movement of the sensory hair cells triggers impulses, which are carried by the vestibular portion of the vestibulocochlear nerve ([[Cranial Nerves - Anatomy & Physiology|CN VIII]]).
 
*Movement of the sensory hair cells triggers impulses, which are carried by the vestibular portion of the vestibulocochlear nerve ([[Cranial Nerves - Anatomy & Physiology|CN VIII]]).
        Line 233: Line 232:  
5. ''Nystagmus with slow phase to lesion'' - nystagmus is rapid, involuntary, oscillatory motion of the eyeball in any direction, and can be caused by a lack of coordination
 
5. ''Nystagmus with slow phase to lesion'' - nystagmus is rapid, involuntary, oscillatory motion of the eyeball in any direction, and can be caused by a lack of coordination
   −
'''Central Vestibular Pathways'''
+
 
 +
<big>'''Central Vestibular Pathways'''</big>
 
[[Image:Central Vestibular Pathways.jpg|thumb|right|150px|Central Vestibular Pathways - Copyright David Bainbridge]]
 
[[Image:Central Vestibular Pathways.jpg|thumb|right|150px|Central Vestibular Pathways - Copyright David Bainbridge]]
 
*The sensory hair cells produce signals, which are carried by the vestibulocochlear nerve ([[Cranial Nerves - Anatomy & Physiology|CN VIII]]) first of all through the bipolar vestibular ganglion cells.
 
*The sensory hair cells produce signals, which are carried by the vestibulocochlear nerve ([[Cranial Nerves - Anatomy & Physiology|CN VIII]]) first of all through the bipolar vestibular ganglion cells.
76

edits

Navigation menu