Line 37: Line 37:  
For cats, cis-linoleic and arachidonic acid are essential fatty acids. However, other fatty acids, specifically long-chain omega-3 fatty acids such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are essential for normal development<ref>Innis, S.M. Dietary (n-3) fatty acids and brain development. J Nutr 2007:137:855-9</ref>.  DHA and EPA have been shown to have anti-inflammatory effects<ref>Serini, S., Bizzarro, A., Piccioni, E., Fasano, E., Rossi, C., Lauria, A., Cittadini, A.R., Masullo, C., Calviello, G. (2012) EPA and DHA differentially affect in vitro inflammatory cytokine release by peripheral blood mononuclear cells from Alzheimer's patients. Curr Alzheimer Res. 9(8):913-23.</ref><ref>Weldon, S.M., Mullen, A.C., Loscher, C.E., Hurley, L.A., Roche, H.M. (2007) Docosahexaenoic acid induces an anti-inflammatory profile in lipopolysaccharide-stimulated human THP-1 macrophages more effectively than eicosapentaenoic acid. J Nutr Biochem. 18(4):250-8.</ref><ref>Mullen, A., Loscher, C.E., Roche, H.M. (2010) Anti-inflammatory effects of EPA and DHA are dependent upon time and dose-response elements associated with LPS stimulation in THP-1-derived macrophages.. J Nutr Biochem. 21(5):444-50.</ref>.
 
For cats, cis-linoleic and arachidonic acid are essential fatty acids. However, other fatty acids, specifically long-chain omega-3 fatty acids such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are essential for normal development<ref>Innis, S.M. Dietary (n-3) fatty acids and brain development. J Nutr 2007:137:855-9</ref>.  DHA and EPA have been shown to have anti-inflammatory effects<ref>Serini, S., Bizzarro, A., Piccioni, E., Fasano, E., Rossi, C., Lauria, A., Cittadini, A.R., Masullo, C., Calviello, G. (2012) EPA and DHA differentially affect in vitro inflammatory cytokine release by peripheral blood mononuclear cells from Alzheimer's patients. Curr Alzheimer Res. 9(8):913-23.</ref><ref>Weldon, S.M., Mullen, A.C., Loscher, C.E., Hurley, L.A., Roche, H.M. (2007) Docosahexaenoic acid induces an anti-inflammatory profile in lipopolysaccharide-stimulated human THP-1 macrophages more effectively than eicosapentaenoic acid. J Nutr Biochem. 18(4):250-8.</ref><ref>Mullen, A., Loscher, C.E., Roche, H.M. (2010) Anti-inflammatory effects of EPA and DHA are dependent upon time and dose-response elements associated with LPS stimulation in THP-1-derived macrophages.. J Nutr Biochem. 21(5):444-50.</ref>.
   −
There is evidence that higher levels of DHA in puppy diets produce improved cognitive performance in laboratory tests (reversal task learning, visual contrast discrimination, and early psychomotor performance)<ref> Zicker, S.C, Jewell, D.E., Yamka, R.M., et al. Evaluation of cognitive learning, memory, psychomotor, immunologic, and retinal functions in healthy puppies fed foods fortified with docosahexanoeic acid-rich fish oil from 8-52 weeks. J Am Vet Med Assoc 2012;241:583-94</ref>, and are essential for normal retinal function<ref>Bauer, J.E., Heinemann, K.M., Lees, G.E., et al. Retinal functions of young dogs are improved and maternal plasma phospholipids are altered with diets containing long-chain n-3 polyunsaturated fatty acids during gestation, lactation, and after weaning. J Nutr 2006;1191S-994S</ref> and neurological development. <ref>Heinemann, K.M., Bauer, J.E., Docosaheaenoic acid and neurologic development in animals. J Am Vet Med Assoc 2006;228:700-6</ref>
+
There is evidence that higher levels of DHA in puppy diets produce improved cognitive performance in laboratory tests (reversal task learning, visual contrast discrimination, and early psychomotor performance)<ref> Zicker, S.C, Jewell, D.E., Yamka, R.M., et al. Evaluation of cognitive learning, memory, psychomotor, immunologic, and retinal functions in healthy puppies fed foods fortified with docosahexanoeic acid-rich fish oil from 8-52 weeks. J Am Vet Med Assoc 2012;241:583-94</ref>, and are essential for normal retinal function<ref>Bauer, J.E., Heinemann, K.M., Lees, G.E., et al. Retinal functions of young dogs are improved and maternal plasma phospholipids are altered with diets containing long-chain n-3 polyunsaturated fatty acids during gestation, lactation, and after weaning. J Nutr 2006;1191S-994S</ref> and neurological development. <ref>Heinemann, K.M., Bauer, J.E., Docosaheaenoic acid and neurologic development in animals. J Am Vet Med Assoc 2006;228:700-6</ref>.
 +
 
 +
Fatty acids such as DHA form part of the modified diets and dietary supplements that are used to treat canine and feline cognitive dysfunction<ref>Heath, S.E., Barabas, S., Craze, P.G., (2007) Nutritional supplementation in cases of canine cognitive dysfunction—A clinical trial
 +
Applied Animal Behaviour Science. 105. 284–296.</ref>
    
==Behavioural Problems Related to Diet and Their Diagnosis==
 
==Behavioural Problems Related to Diet and Their Diagnosis==
694

edits