Line 6: Line 6:     
==Roles in the Body==
 
==Roles in the Body==
Manganese is a component of a diverse group metalloenzymes including arginase, pyruvate carboxylase and manganese superoxide dismutase that are important regulators of the urea cycle, gluconeogenesis and lipogenesis, and detoxification of oxygen radicals. Manganese is also a metallic activator for other enzymes such as hydrolases, decarboxylases, kinases and transferases<ref name="Hurley">Hurley, L, Keen, C (1987). “Manganese” in Trace Elements in Human and Animal Nutrition, 5th edn., Vol. 1. ed. by W. Mertz, Academic Press, San Diego, California, USA: p 185-223.</ref>. It is known to be important for normal bone development and neurological function. The bioavailability of manganese is affected by several factors. Calcium, phosphorus, and phytate all have an adverse effect on manganese absorption whereas iron seems to act by increasing faecal manganese losses. In contrast, the amino acids cysteine and histidine enhance the uptake of manganese<ref name="NRC">“Manganese” In: Mineral Tolerance of Animals, 2nd Edition. (2005) National Research Council, National Academy of Sciences. The National Academies Press, Washington DC: p 235-247.</ref>.
+
Manganese is a component of a diverse group metalloenzymes including arginase, pyruvate carboxylase and manganese superoxide dismutase that are important regulators of the urea cycle, gluconeogenesis and lipogenesis, and detoxification of oxygen radicals. Manganese is also a metallic activator for other enzymes such as hydrolases, decarboxylases, kinases and transferases<ref name="Hurley">Hurley, L, Keen, C (1987). “Manganese” in Trace Elements in Human and Animal Nutrition, 5th edn., Vol. 1. ed. by W. Mertz, Academic Press, San Diego, California, USA: p 185-223.</ref>. It is known to be important for normal bone development and neurological function. The bioavailability of manganese is affected by several factors. [[Calcium - Nutrition|Calcium]], [[Phosphorus - Nutrition|phosphorus]], and phytate all have an adverse effect on manganese absorption whereas [[Iron - Nutrition|iron]] seems to act by increasing faecal manganese losses. In contrast, the amino acids [[Methionine and Cysteine - Nutrition|cysteine]] and [[Histidine - Nutrition|histidine]] enhance the uptake of manganese<ref name="NRC">“Manganese” In: Mineral Tolerance of Animals, 2nd Edition. (2005) National Research Council, National Academy of Sciences. The National Academies Press, Washington DC: p 235-247.</ref>.
    
==Consequences of Manganese Deficiency==
 
==Consequences of Manganese Deficiency==