Line 7: Line 7:  
In the last 20 years, selective breeding and improved genetics have dramatically increased the individual cow's milk yield and hence the energy requirements for lactation. In order to meet these increased energy demands and avoid prolonged negative energy balance in early lactation, the energy density of the ration has also been increased. This has been achieved by feeding high levels of concentrate feed and energy-rich maize silage. Although these are effective in helping to meet energy requirements, they also contain large quantities of rapidly fermentable carbohydrates that cause increased production of acid in the rumen. The results in a fall in rumen pH below the optimum range of 6-7. This is known as subacute rumenal acidosis.  
 
In the last 20 years, selective breeding and improved genetics have dramatically increased the individual cow's milk yield and hence the energy requirements for lactation. In order to meet these increased energy demands and avoid prolonged negative energy balance in early lactation, the energy density of the ration has also been increased. This has been achieved by feeding high levels of concentrate feed and energy-rich maize silage. Although these are effective in helping to meet energy requirements, they also contain large quantities of rapidly fermentable carbohydrates that cause increased production of acid in the rumen. The results in a fall in rumen pH below the optimum range of 6-7. This is known as subacute rumenal acidosis.  
   −
Subacute rumenal acidosis is a herd problem that is often never recognised, let controlled. The defintion of the condition is "at least 30% of the herd have rumen pH values of less than 5.7 when sampled by rumenocentesis".
+
Subacute rumenal acidosis is a herd problem that is often never recognised, let alone controlled. However, it can contribute to many aspects of ill-health in cattle, and reduces productivity, and so management of the condition makes good economic sense. The defintion of the condition is "at least 30% of the herd have rumen pH values of less than 5.7 when sampled by rumenocentesis".
 
      +
==Pathogenesis==
 
Ruminant animals are adapted to digest and metabolize predominantly forage diets; however, growth rates and milk production are increased substantially when they consume high-grain diets. One consequence of feeding excessive amounts of rapidly fermentable carbohydrates in conjunction with inadequate fiber to ruminants is subacute ruminal acidosis, characterized by periods of low ruminal pH, depressed feed intake, and subsequent health problems. Chronic disease conditions secondary to subacute ruminal acidosis can negate the production gains accomplished by high grain feeding. Dairy cattle, feedlot cattle, and feedlot sheep are all at high risk for developing this condition. Although dairy cattle are typically fed diets that are higher in forage and fiber compared with feedlot animals, this advantage is offset by their much higher dry-matter intakes.
 
Ruminant animals are adapted to digest and metabolize predominantly forage diets; however, growth rates and milk production are increased substantially when they consume high-grain diets. One consequence of feeding excessive amounts of rapidly fermentable carbohydrates in conjunction with inadequate fiber to ruminants is subacute ruminal acidosis, characterized by periods of low ruminal pH, depressed feed intake, and subsequent health problems. Chronic disease conditions secondary to subacute ruminal acidosis can negate the production gains accomplished by high grain feeding. Dairy cattle, feedlot cattle, and feedlot sheep are all at high risk for developing this condition. Although dairy cattle are typically fed diets that are higher in forage and fiber compared with feedlot animals, this advantage is offset by their much higher dry-matter intakes.
 
Field observations suggest that periparturient cows are at risk of subacute ruminal acidosis because of the time required for the rumen microflora and papillae to adapt to increased intakes of concentrates immediately before parturition and during early lactation when feed intake increases rapidly to meet the energy needs of high-producing dairy cows. The adaptation of the ruminal microflora and papillae from a system appropriate for forage to a system capable of utilizing high-energy lactation rations requires a gradual change over a period of 3-5 wk.
 
Field observations suggest that periparturient cows are at risk of subacute ruminal acidosis because of the time required for the rumen microflora and papillae to adapt to increased intakes of concentrates immediately before parturition and during early lactation when feed intake increases rapidly to meet the energy needs of high-producing dairy cows. The adaptation of the ruminal microflora and papillae from a system appropriate for forage to a system capable of utilizing high-energy lactation rations requires a gradual change over a period of 3-5 wk.
Line 26: Line 26:  
Caudal vena cava syndrome can cause hemoptysis and peracute deaths due to massive pulmonary hemorrhage in affected cows. In these cases, septic emboli from liver abscesses can lead to lung infections, which ultimately invade pulmonary vessels and cause them to rupture.
 
Caudal vena cava syndrome can cause hemoptysis and peracute deaths due to massive pulmonary hemorrhage in affected cows. In these cases, septic emboli from liver abscesses can lead to lung infections, which ultimately invade pulmonary vessels and cause them to rupture.
 
Subacute ruminal acidosis has also been associated with laminitis and subsequent hoof overgrowth, sole abscesses, and sole ulcers. The severity of laminitis depends on the duration and frequency of metabolic insult. These foot problems generally do not appear until weeks or months after the initiating event. The mechanism by which subacute ruminal acidosis increases the risk of laminitis has not been fully characterized.
 
Subacute ruminal acidosis has also been associated with laminitis and subsequent hoof overgrowth, sole abscesses, and sole ulcers. The severity of laminitis depends on the duration and frequency of metabolic insult. These foot problems generally do not appear until weeks or months after the initiating event. The mechanism by which subacute ruminal acidosis increases the risk of laminitis has not been fully characterized.
  −
Risk factors: inadequate effective long fibre in the ration: overall lack of fibre (concentrat:forage DM ratio more than 60:40), lack of effective on fibre (short chop length, overmixing of TMR diets), cow chooses not to eat fibre(sorting of ration; poor/no mixing of TMR diet).
      
==Signalment==
 
==Signalment==
6,502

edits