Changes

Jump to navigation Jump to search
341 bytes added ,  13:57, 12 October 2010
no edit summary
Line 1: Line 1: −
{{unfinished}}
+
{{review}}
   −
{| cellpadding="10" cellspacing="0" border="1"
+
Also known as: '''''Autonomic Polyganglioneuropathy Feline Dysautonomia
| Also known as:
  −
| '''Autonomic Polyganglioneuropathy'''<br>
  −
'''Feline Dysautonomia'''
  −
|}
     −
==Description==
+
==Introduction==
Key-Gaskell Syndrome refers to the clinical signs observed in cats with abnormal function of the sympathetic and parasympathetic nervous systems. It is similar to [[Grass Sickness|grass sickness]] in horses and, like this disease, it is often fatal.
+
Key-Gaskell Syndrome refers to the clinical signs observed in cats with abnormal function of the sympathetic and parasympathetic nervous systems. It is similar to [[Grass Sickness|grass sickness]] in horses and, like this disease, it is often fatal.
   −
The syndrome has occurred as outbreaks<ref>Cave TA, Knottenbelt C, Mellor DJ, Nunn F, Nart P, Reid SW '''Outbreak of dysautonomia (Key-Gaskell syndrome) in a closed colony of pet cats.''' ''Vet Rec. 2003 Sep 27;153(13):387-92.''</ref> in the past in the UK, continental Europe and occasionally in the USA. It was first described by Key and Gaskell as a 'puzzling syndrome' causing pupillary dilatation in cats at the start of a major outbreak in the UK in 1982<ref>Key TJ, Gaskell CJ. '''Puzzling syndrome in cats associated with pupillary dilatation.''' ''Vet Rec. 1982 Feb 13;110(7):160.''</ref>. It is currently described only sporadically but recent reports suggest that the incidence of the disease may be increasing again.
+
The syndrome has occurred as outbreaks<ref>Cave TA, Knottenbelt C, Mellor DJ, Nunn F, Nart P, Reid SW '''Outbreak of dysautonomia (Key-Gaskell syndrome) in a closed colony of pet cats.''' ''Vet Rec. 2003 Sep 27;153(13):387-92.''</ref> in the past in the UK, continental Europe and occasionally in the USA. It was first described by Key and Gaskell as a 'puzzling syndrome' causing pupillary dilatation in cats at the start of a major outbreak in the UK in 1982<ref>Key TJ, Gaskell CJ. '''Puzzling syndrome in cats associated with pupillary dilatation.''' ''Vet Rec. 1982 Feb 13;110(7):160.''</ref>. It is currently described only sporadically but recent reports suggest that the incidence of the disease may be increasing again.
   −
The cause of the dysautonomia is not known but numerous factors have been implicated and it is generally thought to occur after exposure to a toxin, possibly in dry food or vaccines. As with grass sickness, it has also been suggested that toxins produced by ''[[Clostridium botulinum]]'' may be involved in the pathogenesis of the disease and a recent study showed that cats with the disease developed significantly higher titres of IgA antibody to botulinum toxins C and D than healthy controls<ref>Nunn F, Cave TA, Knottenbelt C, Poxton IR. '''Association between Key-Gaskell syndrome and infection by Clostridium botulinum type C/D.''' ''Vet Rec. 2004 Jul 24;155(4):111-5.''</ref>.  Whatever the cause, degenerative lesions develop in the autonomic ganglia, intermedio-lateral columns of spinal grey matter and in the axons of the sympathetic neurones.
+
The cause of the dysautonomia is not known but numerous factors have been implicated and it is generally thought to occur after exposure to a toxin, possibly in dry food or vaccines. As with grass sickness, it has also been suggested that toxins produced by ''[[Clostridium botulinum]]'' may be involved in the pathogenesis of the disease and a recent study showed that cats with the disease developed significantly higher titres of IgA antibody to botulinum toxins C and D than healthy controls<ref>Nunn F, Cave TA, Knottenbelt C, Poxton IR. '''Association between Key-Gaskell syndrome and infection by Clostridium botulinum type C/D.''' ''Vet Rec. 2004 Jul 24;155(4):111-5.''</ref>.  Whatever the cause, degenerative lesions develop in the autonomic ganglia, intermedio-lateral columns of spinal grey matter and in the axons of the sympathetic neurones.
    
==Signalment==
 
==Signalment==
Line 21: Line 17:  
==Diagnosis==
 
==Diagnosis==
 
===Clinical Signs===
 
===Clinical Signs===
The sympathetic and parasympathetic nervous systems are involved in the regulation of multiple organ systems, particularly the gastro-intestinal tract and the secretory glands. Common clinical signs therefore include:
+
The sympathetic and parasympathetic nervous systems are involved in the regulation of multiple organ systems, particularly the gastro-intestinal tract and the secretory glands. Common clinical signs therefore include:
 
*'''Anorexia''' and '''constipation''' due to intestinal ileus.
 
*'''Anorexia''' and '''constipation''' due to intestinal ileus.
 
*'''Abdominal distension''' may occur as a result of generalised paralytic ileus.
 
*'''Abdominal distension''' may occur as a result of generalised paralytic ileus.
*'''[[Megaoesophagus]]''' due to failure of oesophageal motility. This may cause regurgitation and secondary aspiration pneumonia.
+
*'''[[Megaoesophagus]]''' due to failure of oesophageal motility. This may cause regurgitation and secondary aspiration pneumonia.
 
*'''Depression'''
 
*'''Depression'''
 
*'''Bradycardia'''
 
*'''Bradycardia'''
*Decreased '''lacrimation''' and '''salivation''' due to reduced tone in the parasympathetic nerves that stimulate secretion. The xerotsomia caused by reduced production of saliva may be apparent as dry mucous membranes on clinical examination.
+
*Decreased '''lacrimation''' and '''salivation''' due to reduced tone in the parasympathetic nerves that stimulate secretion. The xerostomia caused by reduced production of saliva may be apparent as dry mucous membranes on clinical examination.
 
*'''Pupillary dilatation''' due to reduced tone of the constrictor muscle of the iris, usually controlled by the parasympathetic fibres of the short ciliary nerves.
 
*'''Pupillary dilatation''' due to reduced tone of the constrictor muscle of the iris, usually controlled by the parasympathetic fibres of the short ciliary nerves.
   Line 33: Line 29:     
===Diagnostic Imaging===
 
===Diagnostic Imaging===
[[Megaoesophagus|Oesophageal dilatation]] may be observed on '''plain radiographs of the chest'''. A 'trachea stripe sign' may also be visible due to the compression of the tissue between the oesophagus and trachea.   
+
[[Megaoesophagus|Oesophageal dilatation]] may be observed on '''plain radiographs of the chest'''. A 'trachea stripe sign' may also be visible due to the compression of the tissue between the oesophagus and trachea.   
    
Oesophageal hypomotility may be evident with barium contrast study or using fluoroscopy to observe the dynamic passage of food boluses into the stomach.
 
Oesophageal hypomotility may be evident with barium contrast study or using fluoroscopy to observe the dynamic passage of food boluses into the stomach.
    
===Pharmalogical Tests===
 
===Pharmalogical Tests===
Various provocative tests can be used to assess the autonomic nerbous systems of animals with suspected Key-Gaskell syndrome:
+
Various provocative tests can be used to assess the autonomic nervous systems of animals with suspected Key-Gaskell syndrome:
*Topical ocular administration of dilute pilocarpine should result in miosis, which implies a postive result. However, not all animals respond and the response is dependent on the degree of damage to the postganglionic parasympathetic neuron causing (denervation) supersensitivity of the iris muscle.
+
*Topical ocular administration of dilute pilocarpine should result in miosis, which implies a positive result. However, not all animals respond and the response is dependent on the degree of damage to the postganglionic parasympathetic neuron causing (denervation) supersensitivity of the iris muscle.
*Intra-venous or subcutaneous administration of atropine (a parasympatholytic) should result in an increase in the heart rate. A failure to respond implies a positive result.
+
*Intra-venous or subcutaneous administration of atropine (a parasympatholytic) should result in an increase in the heart rate. A failure to respond implies a positive result.
*Intra-dermal administration of histamine should result in a classical wheal and flare response but this may be dampened in those animals with dysautonomia. An absence of the wheal and flare response is therefore a positive result.
+
*Intra-dermal administration of histamine should result in a classical wheal and flare response but this may be dampened in those animals with dysautonomia. An absence of the wheal and flare response is therefore a positive result.
    
=====Pathology=====
 
=====Pathology=====
Line 52: Line 48:  
==Treatment==
 
==Treatment==
 
Treatment may be attempted with parasympathomimteic drugs but is largely supportive.
 
Treatment may be attempted with parasympathomimteic drugs but is largely supportive.
 +
 
===Supportive===
 
===Supportive===
Food should be provided from an elevated bowl or via a gastrostomy tube which can be left in place for several weeks if necessary. Total parenteral nutrition may be considered but this cannot be used as a long term option for nutrition and it is associated with many adverse effects.
+
Food should be provided from an elevated bowl or via a gastrostomy tube which can be left in place for several weeks if necessary. Total parenteral nutrition may be considered but this cannot be used as a long term option for nutrition and it is associated with many adverse effects.
    
===Parasympathomimetic Drugs===
 
===Parasympathomimetic Drugs===
Line 59: Line 56:     
==Prognosis==
 
==Prognosis==
The prognosis is guarded or poor. Recovery rates in the cat are reported as 20-40% but it may take 2-12 months for the patient to recover fully. In the dog, recovery rates are lower. Even after making an apparent recovery, many animals are left with residual neurological deficits including intermittent regurgitation.
+
The prognosis is guarded or poor. Recovery rates in the cat are reported as 20-40% but it may take 2-12 months for the patient to recover fully. In the dog, recovery rates are lower. Even after making an apparent recovery, many animals are left with residual neurological deficits including intermittent regurgitation.
 +
 
 +
==Literature Search==
 +
[[File:CABI logo.jpg|left|90px]]
 +
 
 +
 
 +
Use these links to find recent scientific publications via CAB Abstracts (log in required unless accessing from a subscribing organisation).
 +
<br><br><br>
 +
[http://www.cabdirect.org/search.html?q=%28title%3A%28%22Key+Gaskell%22%29+OR+title%3A%28dysatonomia%29+OR+title%3A%28%22Autonomic+Polyganglioneuropathy%22%29%29+AND+%28od%3A%28cats%29+OR+od%3A%28dogs%29%29 Key-Gaskell Syndrome in cats and dogs publications]
    
==References==
 
==References==
Line 69: Line 74:     
[[Category:Oesophagus_-_Pathology]]
 
[[Category:Oesophagus_-_Pathology]]
[[Category:To_Do_-_James]]
   
[[Category:Cat]]
 
[[Category:Cat]]
 
[[Category:Intestine_-_Functional_Obstruction]]
 
[[Category:Intestine_-_Functional_Obstruction]]
[[Category:To_Do_-_James]]
+
[[Category:Dog]][[Category:ExpertReview]]
[[Category:Dog]][[Category:To Do - Review]]
 
Author, Donkey, Bureaucrats, Administrators
53,803

edits

Navigation menu