Difference between revisions of "Heart Structure - Anatomy & Physiology"
(42 intermediate revisions by 10 users not shown) | |||
Line 1: | Line 1: | ||
− | + | <big><center>[[Anatomy & Physiology|'''BACK TO ANATOMY & PHYSIOLOGY''']]</center></big> | |
+ | |||
+ | |||
==Structure of the Heart== | ==Structure of the Heart== | ||
− | + | ||
− | |||
===Position and Shape of the Heart=== | ===Position and Shape of the Heart=== | ||
− | The heart is located in the thoracic cavity in between the | + | The heart is located in the thoracic cavity in between the lungs, 60% of it lying to the left of the median plane. The heart’s lateral projection extends from rib 3 to 6. Most of the heart’s surface is covered by the lungs and in juveniles it is bordered cranially by the thymus. Caudally the heart extends as far as the diaphragm. Variations in position and size exist among individuals depending on species, breed, age, fitness and pathology. Roughly speaking, the heart is responsible for about 0.75% of the bodyweight. |
− | The heart is cone-shaped, with a broad base at the top from which the large blood vessels enter and exit. The tip, known as the apex, points downwards and lies close to the | + | The heart is cone-shaped, with a broad base at the top from which the large blood vessels enter and exit. The tip, known as the apex, points downwards and lies close to the sternum. The longitudinal axis of the heart is tilted to varying degrees depending on the species resulting in the base facing craniodorsally and the apex caudoventrally. |
The heart has a right and left lateral surface, which meet cranially at the right ventricular border and caudally at the left ventricular border. The auricles of the atria are visible on the left side, surrounding the root of the aorta and the pulmonary trunk, whilst the large veins and the main parts of the atria are situated on the right. | The heart has a right and left lateral surface, which meet cranially at the right ventricular border and caudally at the left ventricular border. The auricles of the atria are visible on the left side, surrounding the root of the aorta and the pulmonary trunk, whilst the large veins and the main parts of the atria are situated on the right. | ||
Line 15: | Line 16: | ||
===Pericardium=== | ===Pericardium=== | ||
− | The pericardium is the membrane that surrounds and protects the heart. It is composed of two layers separated by a narrow cavity. The inner layer is firmly attached to the heart wall and is known as the visceral layer or epicardium. The outer layer is composed of relatively inelastic connective tissue and is termed the parietal layer. This fibrous layer prevents distension of the heart, thus preventing excessive stretching of the heart muscle fibres. The cavity between the two layers contains a small volume of fluid which serves as a lubricant, facilitating the movement of the heart by minimising friction. The sternopericardiac ligament connects the parietal layer to the sternum and the phrenopericardiac ligament joins the parietal layer to the diaphragm. The latter is present only in canine | + | The pericardium is the membrane that surrounds and protects the heart. It is composed of two layers separated by a narrow cavity. The inner layer is firmly attached to the heart wall and is known as the visceral layer or epicardium. The outer layer is composed of relatively inelastic connective tissue and is termed the parietal layer. This fibrous layer prevents distension of the heart, thus preventing excessive stretching of the heart muscle fibres. The cavity between the two layers contains a small volume of fluid which serves as a lubricant, facilitating the movement of the heart by minimising friction. The sternopericardiac ligament connects the parietal layer to the sternum and the phrenopericardiac ligament joins the parietal layer to the diaphragm. The latter is present only in the canine. |
===Layers of the Heart Wall=== | ===Layers of the Heart Wall=== | ||
Line 21: | Line 22: | ||
The wall of the heart consists of three layers: the epicardium (external layer), the myocardium (middle layer) and the endocardium (inner layer). The epicardium is the thin, transparent outer layer of the wall and is composed of delicate connective tissue. The myocardium, comprised of cardiac muscle tissue, makes up the majority of the cardiac wall and is responsible for its pumping action. The thickness of the myocardium mirrors the load to which each specific region of the heart is subjected. The endocardium is a thin layer of endothelium overlying a thin layer of connective tissue. It provides a smooth lining for the chambers of the heart and covers the valves. The endocardium is continuous with the endothelial lining of the large blood vessels attached to the heart. | The wall of the heart consists of three layers: the epicardium (external layer), the myocardium (middle layer) and the endocardium (inner layer). The epicardium is the thin, transparent outer layer of the wall and is composed of delicate connective tissue. The myocardium, comprised of cardiac muscle tissue, makes up the majority of the cardiac wall and is responsible for its pumping action. The thickness of the myocardium mirrors the load to which each specific region of the heart is subjected. The endocardium is a thin layer of endothelium overlying a thin layer of connective tissue. It provides a smooth lining for the chambers of the heart and covers the valves. The endocardium is continuous with the endothelial lining of the large blood vessels attached to the heart. | ||
− | + | ===Structure of Cardiac Muscle=== | |
− | Cardiac muscle fibres are shorter in length and larger in diameter than skeletal muscle fibres. They also exhibit branching, which gives an individual fibre a Y-shaped appearance. A typical cardiac muscle fibre is 50-100μm long and has a diameter of about 14μm. Normally, there is only one centrally located nucleus, although occasionally a cell may have two nuclei. The sarcoplasm of cardiac muscle is more abundant than that of skeletal muscle and the mitochondria are larger and more numerous. Cardiac muscle fibres have actin and myosin filaments arranged in the same way as skeletal muscle fibres and possess a well-developed T-tubule system. In contrast to | + | Cardiac muscle fibres are shorter in length and larger in diameter than skeletal muscle fibres. They also exhibit branching, which gives an individual fibre a Y-shaped appearance. A typical cardiac muscle fibre is 50-100μm long and has a diameter of about 14μm. Normally, there is only one centrally located nucleus, although occasionally a cell may have two nuclei. The sarcoplasm of cardiac muscle is more abundant than that of skeletal muscle and the mitochondria are larger and more numerous. Cardiac muscle fibres have actin and myosin filaments arranged in the same way as skeletal muscle fibres and possess a well-developed T-tubule system. In contrast to skeletal muscle, cardiac muscle does not fatigue, cannot be repaired when damaged and is regulated by the autonomic nervous system. |
Although cardiac muscle fibres branch and interconnect with each other, they form two separate functional syncytia, one for the atria and another for the ventricles. The ends of each fibre in a network connect to its neighbours by irregular transverse thickenings of the sarcolemma called intercalated discs. The discs contain desmosomes, which hold the fibres together, and gap junctions, which allow ions to travel between cells and permit the rapid propagation of action potentials. Consequently, excitement of a single fibre of either network results in stimulation of all the other fibres in the network. As a result, each network contracts as a functional unit. | Although cardiac muscle fibres branch and interconnect with each other, they form two separate functional syncytia, one for the atria and another for the ventricles. The ends of each fibre in a network connect to its neighbours by irregular transverse thickenings of the sarcolemma called intercalated discs. The discs contain desmosomes, which hold the fibres together, and gap junctions, which allow ions to travel between cells and permit the rapid propagation of action potentials. Consequently, excitement of a single fibre of either network results in stimulation of all the other fibres in the network. As a result, each network contracts as a functional unit. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Revision as of 13:40, 4 July 2008
Structure of the Heart
Position and Shape of the Heart
The heart is located in the thoracic cavity in between the lungs, 60% of it lying to the left of the median plane. The heart’s lateral projection extends from rib 3 to 6. Most of the heart’s surface is covered by the lungs and in juveniles it is bordered cranially by the thymus. Caudally the heart extends as far as the diaphragm. Variations in position and size exist among individuals depending on species, breed, age, fitness and pathology. Roughly speaking, the heart is responsible for about 0.75% of the bodyweight.
The heart is cone-shaped, with a broad base at the top from which the large blood vessels enter and exit. The tip, known as the apex, points downwards and lies close to the sternum. The longitudinal axis of the heart is tilted to varying degrees depending on the species resulting in the base facing craniodorsally and the apex caudoventrally.
The heart has a right and left lateral surface, which meet cranially at the right ventricular border and caudally at the left ventricular border. The auricles of the atria are visible on the left side, surrounding the root of the aorta and the pulmonary trunk, whilst the large veins and the main parts of the atria are situated on the right.
Grooves on the surface represent the divisions of the internal structure of the heart. The right surface of the heart is marked by the subsinusoidal groove which extends from the coronary groove to the apex of the heart. The paraconal groove runs over the left surface of the heart from the coronary groove to the distal end of the cranial margin. The fat-filled coronary groove contains the coronary blood vessels and marks the separation of the atria and ventricles.
Pericardium
The pericardium is the membrane that surrounds and protects the heart. It is composed of two layers separated by a narrow cavity. The inner layer is firmly attached to the heart wall and is known as the visceral layer or epicardium. The outer layer is composed of relatively inelastic connective tissue and is termed the parietal layer. This fibrous layer prevents distension of the heart, thus preventing excessive stretching of the heart muscle fibres. The cavity between the two layers contains a small volume of fluid which serves as a lubricant, facilitating the movement of the heart by minimising friction. The sternopericardiac ligament connects the parietal layer to the sternum and the phrenopericardiac ligament joins the parietal layer to the diaphragm. The latter is present only in the canine.
Layers of the Heart Wall
The wall of the heart consists of three layers: the epicardium (external layer), the myocardium (middle layer) and the endocardium (inner layer). The epicardium is the thin, transparent outer layer of the wall and is composed of delicate connective tissue. The myocardium, comprised of cardiac muscle tissue, makes up the majority of the cardiac wall and is responsible for its pumping action. The thickness of the myocardium mirrors the load to which each specific region of the heart is subjected. The endocardium is a thin layer of endothelium overlying a thin layer of connective tissue. It provides a smooth lining for the chambers of the heart and covers the valves. The endocardium is continuous with the endothelial lining of the large blood vessels attached to the heart.
Structure of Cardiac Muscle
Cardiac muscle fibres are shorter in length and larger in diameter than skeletal muscle fibres. They also exhibit branching, which gives an individual fibre a Y-shaped appearance. A typical cardiac muscle fibre is 50-100μm long and has a diameter of about 14μm. Normally, there is only one centrally located nucleus, although occasionally a cell may have two nuclei. The sarcoplasm of cardiac muscle is more abundant than that of skeletal muscle and the mitochondria are larger and more numerous. Cardiac muscle fibres have actin and myosin filaments arranged in the same way as skeletal muscle fibres and possess a well-developed T-tubule system. In contrast to skeletal muscle, cardiac muscle does not fatigue, cannot be repaired when damaged and is regulated by the autonomic nervous system.
Although cardiac muscle fibres branch and interconnect with each other, they form two separate functional syncytia, one for the atria and another for the ventricles. The ends of each fibre in a network connect to its neighbours by irregular transverse thickenings of the sarcolemma called intercalated discs. The discs contain desmosomes, which hold the fibres together, and gap junctions, which allow ions to travel between cells and permit the rapid propagation of action potentials. Consequently, excitement of a single fibre of either network results in stimulation of all the other fibres in the network. As a result, each network contracts as a functional unit.