Difference between revisions of "General Oedema"
Jump to navigation
Jump to search
(Created page with "* General oedema involves subcutaneous and tissue spaces/body cavities. * Indicative of severe upset of overall body fluid balance. ** Usually one or more vital organ system is ...") |
|||
Line 1: | Line 1: | ||
+ | ===Introduction=== | ||
* General oedema involves subcutaneous and tissue spaces/body cavities. | * General oedema involves subcutaneous and tissue spaces/body cavities. | ||
* Indicative of severe upset of overall body fluid balance. | * Indicative of severe upset of overall body fluid balance. |
Revision as of 14:33, 14 February 2011
Introduction
- General oedema involves subcutaneous and tissue spaces/body cavities.
- Indicative of severe upset of overall body fluid balance.
- Usually one or more vital organ system is abnormal.
- Requires one or more of the following conditions:
- General increase in arteriolar hydrostatic pressure.
- Decrease in osmotic pressure of blood.
- Increase in tissue fluid osmotic pressure.
- E.g. sodium retention in renal disease.
- Increased capillary permeability.
- E.g. due to hypoxic damage.
Types of General Oedema
Cardiac oedema
- Seen in heart failure.
- Shows that cardiac output fails to meet the demands of the tissues throughout the body.
- Left-side failure gives pulmonary congestion.
- Leads to pulmonary oedema.
- Right-side failure gives systemic congestion.
- Leads to generalised oedema.
- Chronic venous congestion develops when cardiac output fails to keep pace with venous return to the heart.
- Fluid balance is further complicated by secondary renal impairment.
- Sodium is retained, triggering the renin-aldosterone loop with further sodium retention.
Renal oedema
- Kidney malfunction induces oedema as a consequence of deranged sodium and water handling.
- There is often secondary cardiac involvement.
- Due to via renin effect on heart and myocardial depressant factor.
- There is often secondary cardiac involvement.
- Causes:
- Acute glomerulonephritis
- Reduction in glomerular filtration rate results in systemic hypertension and retention of excess sodium and water.
- Nephrotic syndrome
- A glomerular filtration defect gives selective heavy loss of plasma proteins (especially albumin)
- Reduction of plasma osmotic potential results in oedema.
- A glomerular filtration defect gives selective heavy loss of plasma proteins (especially albumin)
- Acute renal tubular necrosis
- Tubules can no longer selectively reabsorb sodium and other electrolytes.
- Water retention with the sodium and urea produces oedema.
- Tubules can no longer selectively reabsorb sodium and other electrolytes.
- Fibrosing glomerulonephritis
- Causes systemic hypertension and secondary cardiac failure with oedema.
- Acute glomerulonephritis
Protein-losing enteropathies
- Mucosal damage leads to loss of ability to absorb and retain proteins.
- Plasma proteins, especially albumin are lost.
- Circulating plasma proteins area therefore reduced, leading to oedema.
- Plasma proteins, especially albumin are lost.
- E.g.
- Johne's disease in cattle and sheep.
- Ulcerative colitis or regional enteritis in dogs.
- For more on protein-losing enteropathies, see Protein-Losing Diseases.
Hepatic oedema
- Associated with severe liver damage.
- Liver damage may be:
- Actue
- E.g. due to acute fascioliasis or canine viral hepatitis.
- Lymphatics and blood vessels of the liver and peritoneal caivity are damaged.
- Results in "overflow" of fluid into the peritoneal cavity.
- Additionally, hepatocyte damage may result in inadequate inactivation of aldosterone.
- Increases sodium retention giving further water accumulation in the abdomen
- Chronic
- E.g. metastatic neoplasia or fibrosing hepatopathy (cirrhosis).
- Failure to produce plasma proteins leads to osmotic imbalance in the peripheral circulation.
- This is seen as subcutaneous oedema.
- E.g. "bottle jaw".
- Actue
- Liver damage may be: