Recurrent Airway Obstruction

From WikiVet English
Jump to navigation Jump to search



Also known as: RAO, chronic obstructive pulmonary disease, COPD, heaves.

Do not confuse with: summer pasture associated obstructive pulmonary disease.

Description

Recurrent airway obstruction (RAO) is an inflammatory, obstructive respiratory disease of horses. Disease is induced by the exposure of susceptible animals to organic dust, which gives neutrophil influx to the airways, bronchospasm and mucus accumulation1. This causes a cough, nasal discharge, and respiratory difficulty. When exposure to the allergen is eliminated, obstruction and clinical signs resolove or attenuate. However, animals are susceptible to reccurent episodes of airway obstruction throughout their lives, and so management is essential.

Since disease required exposure to organic dust, recurrent airway obstruction occurs in stabled horses that are, for example, bedded on straw and fed hay. The condition is therefore most prevalent in the northern hemisphere because horses tend to be stabled for large parts of their lives2. Summer pasture-associated obstructive pulmonary disease (SPAOD) is a similar condition that occurs when horses kept on pasture are sensitive to environmental allergens, and may be considered the same disease as RAO but with different inciting factors1.

Pathogenesis

When a horse with a history of RAO is moved from pasture to a stable, the hay it is fed and the straw it is bedded on harbour organic dusts. These dusts contain components which are capable of causing inflammation of the lungs, such as specific allergens, endotoxin, moulds and small particulate matter1. Although small particles and endotoxin are known to cause pulmonary inflammation, there is evidence to suggest that there is an allergic component to recurrent airway obstruction. For example, bronchoalveolar lavage fluid in RAO has been shown to have increased levels of IgE specific for various mouldshaliwell, and the cytokine response appaears to be skewed towards TH2lavoi: both of these facts are suggestive of an allergic mechanism.

On exposure to dust, neutrophils accumulate in the lung and quickly invade the lumen of the airway1. Aiway obstruction then develops due to several mechanisms. Mucus becomes more viscous and accumulates in the luman, and bronchospasm is initiated by the actions of inflammatory mediators on airway smooth muscle and cholinergic nerves. Oedema of the airway wall also contributes to narrowing, and in horses suffering chronic disease, the wall remodels to include smooth muscle hypertrophy and peribronchial fibrosis.

One of the characteristic features of horses with RAO is increased non-specific airway hyperresponsiveness [34,35]. This means that airways of RAO-affected horses narrow in an exaggerated fashion in response to a wide variety of stimuli including neurotransmitters [36], inflammatory mediators such as histamine [34,35,37], and non-specific stimuli such as citric acid [36]. The airway hyperresponsiveness is most pronounced during acute exacerbations of RAO when inflammation is most severe and hyperresponsiveness wanes when animals are out at pasture [34,36] and inflammation is less severe. Even quite brief exposure of a RAO-susceptible horse to a stable environment can induce hyperresponsiveness that persists for several days [38]. The causes of the hyperresponsiveness include airway wall thickening, smooth muscle hypertrophy, a reduction in some of the inhibitory mechanisms that limit smooth muscle contraction [39,40] and actions of inflammatory mediators on cholinergic nerves and smooth muscle to facilitate smooth muscle contraction [25,26]. Clinically, airway hyperresponsiveness is important because it means that RAO-susceptible horses are prone to develop bronchospasm in response to levels of stimuli that would not affect a normal horse. Reducing the level of airway inflammation best controls hyperresponsiveness.

Many apparently normal horses develop low levels of airway inflammation when housed in the environment that causes a massive influx of neutrophils into the airways on RAO susceptible animal [41,42]. The reasons for the up-regulation of the inflammatory response following a dust challenge and the persistence of inflammation when RAO susceptible horses are returned to pasture are under active investigation. There is evidence for depletion of endogenous antioxidants in the airways of RAO susceptible animals [43,44] and for prolonged activation of NFkB, a transcription factor that initiates the production of many pro-inflammatory cytokines [22]. Activation of NFkB may be due to a positive feedback loop involving the persistent production of TNFa and IL-1b by neutrophils [45]. Inflammation also persists because apoptosis of neutrophils is delayed [46]. Because of the diffuse obstruction of the peripheral airways, horses with RAO have a mismatching of ventilation and blood flow that leads to inefficient gas exchange and hypoxemia [47]. In order to compensate for the poor gas exchange, RAO-affected horses increase their minute ventilation by increasing respiratory rate [47,48]. Tidal volume does not change. Inhaling the same tidal volume in less time requires that the horse with RAO develop a higher mean airflow rates in the face of airway obstruction [47-49]. This is why, the horse adopts the breathing pattern characteristic of heaves.

Signalment

RAO usually becomes apparent in middle-aged and older horses, and persists for lifeallen. There is some evidence that there may be a genetic component to the disease, as many horses do not suffer RAO when they are housed in environments that can provoke clinical disease in othersmarti.

Diagnosis

Clinical Signs

Diagnostis Imaging

Laboratory Tests

Pathology

COPD (Image sourced from Bristol Biomed Image Archive with permission)
COPD scanning electron micrograph (Image sourced from Bristol Biomed Image Archive with permission)

Treatment

Links

References

  1. Robinson, N E (2001) Recurrent Airway Obstruction. In Equine Respiratory Diseases, IVIS.
  2. Robinson N E et al (1995) The pathogenesis of chronic obstructive pulmonary disease of horses. The British Veterinary Journal, 152, 283-306.
  3. Merck & Co (2008) The Merck Veterinary Manual (Eighth Edition), Merial.
  4. Allen, K and Franklin, S (2007) RAO and IAD: respiratory disease in horses revisited. In Practice, 29(2), 76-82.
  5. Halliwell R E W et al (1993) Local and systemic antibody production in horses affected with chronic obstructive pulmonary disease. Veterinary Immunology and Immunopathology, 38, 201-215.
  6. Lavoie J P et al(2001) Neutrophilic Airway Inflammation in Horses with Heaves Is Characterized by a Th2-type Cytokine Profile. American Journal of Respiratory and Critical Care Medicine, 164, 1410-1413.
  7. Marti, E et al (1991) The genetic basis of equine allergic diseases 1. Chronic hypersensitivity bronchitis. The Equine Veterinary Journal, 23, 457-460.
  8. McGorum, B et al (2007) Equine respiratory medicine and surgery, Elsevier Health Sciences.
  9. Durham, A (2001) Update on therapeutics for obstructive pulmonary diseases in horses. In Practice, 23(8), 474-481.