Difference between revisions of "Liver - Anatomy & Physiology"
(34 intermediate revisions by 14 users not shown) | |||
Line 1: | Line 1: | ||
− | |||
[[Image:Pig Liver Topography.jpg|thumb|right|300px|Liver Topography (Pig) - Copyright Nottingham 2008]] | [[Image:Pig Liver Topography.jpg|thumb|right|300px|Liver Topography (Pig) - Copyright Nottingham 2008]] | ||
==Introduction== | ==Introduction== | ||
The liver (hepar) is an extremely important organ in the body of mammals and vertebrates as it provides functions essential for life. It is the largest internal organ and has numerous functions including production of bile and protein, fat and carbohydrate metabolism. During foetal development, the liver has an important haemopoetic function, producing red and white blood cells from tissue between the hepatic cells and vessel walls. | The liver (hepar) is an extremely important organ in the body of mammals and vertebrates as it provides functions essential for life. It is the largest internal organ and has numerous functions including production of bile and protein, fat and carbohydrate metabolism. During foetal development, the liver has an important haemopoetic function, producing red and white blood cells from tissue between the hepatic cells and vessel walls. | ||
− | The size of the liver varies due to its role in metabolism. In carnivores the liver weighs about 3-5% of body weight, in omnivores 2-3% and in herbivores 1.5%. the liver is much heavier in young animals than older animals as it | + | The size of the liver varies due to its role in metabolism. In carnivores the liver weighs about 3-5% of body weight, in omnivores 2-3% and in herbivores 1.5%. the liver is much heavier in young animals than older animals as it atropies with age. |
The liver is derived from an outpocketing of endoderm epithelium on the ventral duodenum from the caudal part of the foregut. The connection to the gut narrows to become the bile duct. The parenchymal tissue of the liver is formed from proliferating epithelial cords or strands which integrate with the blood sinuses of the umbilical and vitelline veins. | The liver is derived from an outpocketing of endoderm epithelium on the ventral duodenum from the caudal part of the foregut. The connection to the gut narrows to become the bile duct. The parenchymal tissue of the liver is formed from proliferating epithelial cords or strands which integrate with the blood sinuses of the umbilical and vitelline veins. | ||
Line 13: | Line 12: | ||
[[Image:Topography of the Liver.jpg|thumb|right|250px|Topography of the Liver (Dog)- Copyright RVC 2008]] | [[Image:Topography of the Liver.jpg|thumb|right|250px|Topography of the Liver (Dog)- Copyright RVC 2008]] | ||
− | The liver is located in the cranial part of the abdomen. It | + | The liver is located in the cranial part of the abdomen. It us immediately caudal to the diaphragm and cranial to the [[Monogastric Stomach - Anatomy & Physiology|stomach]] and intestines. Generally the bulk of the liver is on the right of the midline. It is divided into lobes by fissures. Cranially the liver is convex, called the diaphragmatic surface. Caudally the liver is concave, called the visceral surface. The caudate lobe has a renal impression from the right [[Urinary System - Anatomy & Physiology#Upper Urinary Tract|kidney]]. The gastric impression occupies the whole of the left half of the visceral face. The [[Duodenum - Anatomy & Physiology|duodenal]] impression at the junction of the right and quadrate lobes continues onto the right lateral and caudate lobes. Passages or notches on the median plane allow the caudal vena cava and [[Oesophagus - Anatomy & Physiology|oesophagus]] to pass by. The [[Gall Bladder - Anatomy & Physiology|gall bladder]] is located between the right medial and quadrate lobes. '''Reticular fibres''' (collagen type III, proteoglycans and glycoproteins) support the hepatocytes and walls of the sinusoids. Interlobular spaces support bile ducts and blood vessels. The lesser omentum (often fat filled) is on the visceral surface between the left lateral lobe, heptic porta and lesser curvature of the [[Monogastric Stomach - Anatomy & Physiology|stomach]]. There is a oesophageal notch where the [[Oesophagus - Anatomy & Physiology|oesophagus]] passes over the liver. |
==Divisions of the Liver== | ==Divisions of the Liver== | ||
Line 25: | Line 24: | ||
==Ligaments== | ==Ligaments== | ||
− | The '''coronary ligament''' attaches the liver (from the diaphragmatic surface) to the diaphragm. It is an irregular fold of peritoneum. It | + | The '''coronary ligament''' attaches the liver (from the diaphragmatic surface) to the diaphragm. It is an irregular fold of peritoneum. It surounds the triangular base of the diaphragmatic surface. It is continuous with outer most layer of the caudal vena cava. |
The '''falciform ligament''' is ventral to the coronary ligament. It is a fat filled embryological remnant of the fetal blood vessels from the placenta. It causes problems for surgical entry into the abdomen. It is located cranial to the umbilicus and is a vestige of the umbilical vein. | The '''falciform ligament''' is ventral to the coronary ligament. It is a fat filled embryological remnant of the fetal blood vessels from the placenta. It causes problems for surgical entry into the abdomen. It is located cranial to the umbilicus and is a vestige of the umbilical vein. | ||
The '''triangular ligament''' is on the right and left sides of the coronary ligament. | The '''triangular ligament''' is on the right and left sides of the coronary ligament. | ||
Line 47: | Line 46: | ||
The liver has a dual blood supply. 70-80% via the hepatic portal vein (nutrient rich) and 20-30% via the hepatic artery (oxygen rich). It has a large blood supply (nearly a 1/3 of cardiac output passes through the liver). | The liver has a dual blood supply. 70-80% via the hepatic portal vein (nutrient rich) and 20-30% via the hepatic artery (oxygen rich). It has a large blood supply (nearly a 1/3 of cardiac output passes through the liver). | ||
− | The '''hepatic artery''' is a branch of the caeliac artery. The '''portal vein''' is formed by tributaries draining the | + | The '''hepatic artery''' is a branch of the caeliac artery. The '''portal vein''' is formed by tributaries draining the spleen, pancreas and digestive tract. '''Intrahepatic arteries''' combine with '''portal vein''' branches to supply the connective tissue and hepatic sinusoids of the liver. Blood flows from the portal areas into the central vein. The central vein is lined by simple squamous epithelium. The bile duct, blood vessels (including the important hepatic vein) and nerves enter and leave the liver at the hepatic porta. Blood from the central vein opens into the caudal vena cava. Liver circulation is controlled by interarterial, intervenous, arteriovenous, and by sphincter mechanisms, allowing carefull reglulation. |
==Innervation== | ==Innervation== | ||
Line 65: | Line 64: | ||
==Bile Acids== | ==Bile Acids== | ||
− | Bile acids are composed of cholesterol, bile acids and steroids. The main bile acid is '''cholic acid''' (C24). Conjugated to taurine or glycine in the liver to reduce pKa so they exist in an ionised form as bile salts. Bile salts conjugate with cholesterol and phospholipids and are then secreted into the bile. | + | Bile acids are composed of cholesterol, bile acids and steroids. The main bile acid is '''cholic acid''' (C24). Conjugated to taurine or glycine in the liver to reduce pKa so they exist in an ionised form as bile salts. Bile salts conjugate with cholesterol and phospholipids and are then secreted into the bile. 95% are recycled in enterohepatic circulation. They emulsify fats which helps absorb fat soluble vitamins. In aqueous solution, they form micelles which are amphiphilic and can transport free fatty acids across the brush border. |
+ | |||
==Species Differences== | ==Species Differences== | ||
[[Image:Canine Liver Topography.jpg|thumb|right|250px|Liver Topography (Dog) - Copyright Nottingham 2008]] | [[Image:Canine Liver Topography.jpg|thumb|right|250px|Liver Topography (Dog) - Copyright Nottingham 2008]] | ||
Line 71: | Line 71: | ||
===Canine & Feline=== | ===Canine & Feline=== | ||
− | Both the left and right lobes are subdivided. Complete obstruction of the hepatic artery is fatal. The liver is almost entirely intra-thoracic. An enlarged caudate process contacts the right [[Urinary System | + | Both the left and right lobes are subdivided. Complete obstruction of the hepatic artery is fatal. The liver is almost entirely intra-thoracic. An enlarged caudate process contacts the right [[Urinary System - Anatomy & Physiology#Upper Urinary Tract|kidney]]. |
===Equine=== | ===Equine=== | ||
Line 80: | Line 80: | ||
===Porcine=== | ===Porcine=== | ||
− | The liver has deep interlobular fissures and a large amount of interlobular connective tissue. It has a mottled appearance. A Deep interlobular fissure divides the | + | The liver has deep interlobular fissures and a large amount of interlobular connective tissue. It has a mottled appearance. A Deep interlobular fissure divides the lived into 4 lobes- the left, right, medial and lateral. There is a small caudate lobe (which does not contact the [[Urinary System - Anatomy & Physiology#Upper urinary Tract|kidney]] so no renal impression). It is mostly on the right of the midline and has no papillary lobe. |
===Ruminants=== | ===Ruminants=== | ||
Line 93: | Line 93: | ||
See [[Avian Liver - Anatomy & Physiology|avian liver]] | See [[Avian Liver - Anatomy & Physiology|avian liver]] | ||
− | == | + | ==Links== |
− | |||
− | |||
− | + | '''Test yourself with the [[Liver - Anatomy & Physiology - Flashcards|Liver & Gall Bladder Flashcards]]''' | |
− | [[ | ||
− | ''' | + | '''Click here for information on [[Liver - Histology|liver histology]]''' |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
'''Click here for information on [[:Category:Liver - Pathology|pathology of the Liver]]''' | '''Click here for information on [[:Category:Liver - Pathology|pathology of the Liver]]''' | ||
Line 123: | Line 107: | ||
'''Click here for information on [[Portosystemic Shunt|portosystemic shunting]]''' | '''Click here for information on [[Portosystemic Shunt|portosystemic shunting]]''' | ||
+ | '''Video links:''' | ||
+ | |||
+ | [http://www.onemedicine.tuskegee.edu/DigestiveSystem/Acessory_Organs/Access_Equine.html Liver lobes of the Horse] | ||
+ | |||
+ | [http://www.onemedicine.tuskegee.edu/DigestiveSystem/Acessory_Organs/Access_Ruminants.html Liver lobes of the Cow] | ||
− | + | [http://stream2.rvc.ac.uk/Anatomy/bovine/Pot0061.mp4 Pot 61 The Bovine Liver] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | [http://stream2.rvc.ac.uk/Anatomy/equine/pot0228.mp4 Pot 228 The Equine Liver] | |
− | |||
[[Category:Liver and Gall Bladder - Anatomy & Physiology]] | [[Category:Liver and Gall Bladder - Anatomy & Physiology]] | ||
− | [[Category:To Do - AimeeHicks]] | + | [[Category:To Do - AimeeHicks]][[Category:To Do - Review]] |
Revision as of 09:37, 28 September 2010
Introduction
The liver (hepar) is an extremely important organ in the body of mammals and vertebrates as it provides functions essential for life. It is the largest internal organ and has numerous functions including production of bile and protein, fat and carbohydrate metabolism. During foetal development, the liver has an important haemopoetic function, producing red and white blood cells from tissue between the hepatic cells and vessel walls.
The size of the liver varies due to its role in metabolism. In carnivores the liver weighs about 3-5% of body weight, in omnivores 2-3% and in herbivores 1.5%. the liver is much heavier in young animals than older animals as it atropies with age.
The liver is derived from an outpocketing of endoderm epithelium on the ventral duodenum from the caudal part of the foregut. The connection to the gut narrows to become the bile duct. The parenchymal tissue of the liver is formed from proliferating epithelial cords or strands which integrate with the blood sinuses of the umbilical and vitelline veins. The mesoderm of the septum transversum forms the venous sinosoids and connective tissue of the liver.
Structure
The liver is located in the cranial part of the abdomen. It us immediately caudal to the diaphragm and cranial to the stomach and intestines. Generally the bulk of the liver is on the right of the midline. It is divided into lobes by fissures. Cranially the liver is convex, called the diaphragmatic surface. Caudally the liver is concave, called the visceral surface. The caudate lobe has a renal impression from the right kidney. The gastric impression occupies the whole of the left half of the visceral face. The duodenal impression at the junction of the right and quadrate lobes continues onto the right lateral and caudate lobes. Passages or notches on the median plane allow the caudal vena cava and oesophagus to pass by. The gall bladder is located between the right medial and quadrate lobes. Reticular fibres (collagen type III, proteoglycans and glycoproteins) support the hepatocytes and walls of the sinusoids. Interlobular spaces support bile ducts and blood vessels. The lesser omentum (often fat filled) is on the visceral surface between the left lateral lobe, heptic porta and lesser curvature of the stomach. There is a oesophageal notch where the oesophagus passes over the liver.
Divisions of the Liver
The liver can be divided into lobes, lobules, hepatocytes and sinusoids.
Lobes of the Liver
The lobes of the liver include the left lateral, left medial, right lateral, right medial, quadrate, caudate and papillary.
Ligaments
The coronary ligament attaches the liver (from the diaphragmatic surface) to the diaphragm. It is an irregular fold of peritoneum. It surounds the triangular base of the diaphragmatic surface. It is continuous with outer most layer of the caudal vena cava. The falciform ligament is ventral to the coronary ligament. It is a fat filled embryological remnant of the fetal blood vessels from the placenta. It causes problems for surgical entry into the abdomen. It is located cranial to the umbilicus and is a vestige of the umbilical vein. The triangular ligament is on the right and left sides of the coronary ligament.
Function
Production of bile see Bile Formation.
Nearly all the blood circulated around the abdomen flows back through the portal vein to the liver where it comes in contact with the liver cells, ensuring the products of digestion are presented to the hepatic cells before entering the general circulation. Other functions include carbohydrate metabolism, glycogenesis, glyconeolysis, gluconeogenesis and the breakdown of insulin and other hormones. Protein metabolism produces soluble mediators of the clotting cascade, Albumin and hormone transporting globulins. The liver is also involved in lipid metabolism, lipogenesis and the synthesis of cholesterol.
The liver has a role in hormonal control of the following; Insulin and glucagon, Glucocortocoids, Catecholamines and the synthesis of other important hormones (see Endocrine System). It also has a role in immunoregulation via kupfer cells and the complement synthesis and metabolism.
The liver is important in storage of water soluble vitamins, fat soluble vitamins, iron, triglyceride and glycogen.
The liver breaks down haemoglobin and toxic substances through drug metabolism. It converts ammonia to urea and allows the management of endogenous waste, e.g haem (Hb, cytochromes, Mb) and ammonia (amino acids).
Vasculature
The liver has a dual blood supply. 70-80% via the hepatic portal vein (nutrient rich) and 20-30% via the hepatic artery (oxygen rich). It has a large blood supply (nearly a 1/3 of cardiac output passes through the liver).
The hepatic artery is a branch of the caeliac artery. The portal vein is formed by tributaries draining the spleen, pancreas and digestive tract. Intrahepatic arteries combine with portal vein branches to supply the connective tissue and hepatic sinusoids of the liver. Blood flows from the portal areas into the central vein. The central vein is lined by simple squamous epithelium. The bile duct, blood vessels (including the important hepatic vein) and nerves enter and leave the liver at the hepatic porta. Blood from the central vein opens into the caudal vena cava. Liver circulation is controlled by interarterial, intervenous, arteriovenous, and by sphincter mechanisms, allowing carefull reglulation.
Innervation
The liver is innervated by sympathetic nerves from the periarterial plexuses and parasympathetic nerves from the vagal trunk.
Lymphatics
Efferent vessels pass to hepatic nodes around the hepatic porta. The lymph drains into the visceral cysterna chyli. Some lymph travels to the accessory hepatic and caudal mediastinal lymph nodes on the caudal vena cava.
Hepatic Duct Systems
There are canaliculi within lobules. Canaliculi open into larger ductules then into a few large hapatic ducts. Before and shortly after leaving the hepatic porta, the ducts combine into a single trunk which runs to the duodenum. The cystic duct runs from common trunk to the gall bladder transporting bile from the liver to the gall bladder. Distal to the cystic duct is the bile duct (ductus choledochus) which transports bile from the gall bladder into the duodenum. There are no valves, so bile may flow in either direction.
Bile Acids
Bile acids are composed of cholesterol, bile acids and steroids. The main bile acid is cholic acid (C24). Conjugated to taurine or glycine in the liver to reduce pKa so they exist in an ionised form as bile salts. Bile salts conjugate with cholesterol and phospholipids and are then secreted into the bile. 95% are recycled in enterohepatic circulation. They emulsify fats which helps absorb fat soluble vitamins. In aqueous solution, they form micelles which are amphiphilic and can transport free fatty acids across the brush border.
Species Differences
Canine & Feline
Both the left and right lobes are subdivided. Complete obstruction of the hepatic artery is fatal. The liver is almost entirely intra-thoracic. An enlarged caudate process contacts the right kidney.
Equine
The liver is contained entirely within the rib cage, to the right of the midline. It is less lobated. There is no gall bladder and the left lobe is subdivided. There is no papillary lobe. In the foal, the liver is larger and more symmetrical. The bile duct opens into the duodenum at the same papillae as the major pancreatic duct. Bile is constantly secreted.
Porcine
The liver has deep interlobular fissures and a large amount of interlobular connective tissue. It has a mottled appearance. A Deep interlobular fissure divides the lived into 4 lobes- the left, right, medial and lateral. There is a small caudate lobe (which does not contact the kidney so no renal impression). It is mostly on the right of the midline and has no papillary lobe.
Ruminants
The liver is entirely displaced to right of the midline. It has fused lobes.
Small Ruminants Sheep have a deeper umbilical fissure than cows. Sheep also have a smaller caudate lobe than cows and have two papillary processes.
Avian
See avian liver
Links
Test yourself with the Liver & Gall Bladder Flashcards
Click here for information on liver histology
Click here for information on pathology of the Liver
Click here for information on Hepatic Stellate Cells
Click here for information on Bile Formation
Click here for information on portosystemic shunting
Video links: