Equine Nervous System - Horse Anatomy
This article is still under construction. |
Central Nervous System
Brain
Cranial Nerves
Vasculature of the Brain
Spinal Cord
Meninges
The meninges are layers of tissue surrounding the central nervous system (CNS). Meningitis is the inflammation of these layers. Gaps and spaces between the meninges are named.
Dura mater
The Dura mater is the outer most layer and is made up of a dense fibrous connective tissue. The space in the vertebral canal ouside the dura mater is the epidural space. In the cranium, the dura layer is fused with the periosteum and therefore is in effect single layer without an epidural space. The dura contains a number of folds throughout its coverage of the brain including the falx cerebri, a midline fold between cerebral hemispheres, the tentorium cerebelli, an oblique fold between the cerebrum and cerebellum and the diaphragma sellae which forms a collar around the neck of the pituitary and forms the roof of the hypophyseal fossa. This layer and these associated folds all provide structural support to the brain and prevent the brain from undergoing excess movement within the skull. Where the dura mater folds between brain tissues it splits into two distinct layers that are separated by large blood filled spaces called venous sinuses. Venous sinuses are directly connected to the venous system and venous blood from vessels supplying the brain return to the heart via these sinuses.
Subdural space
The subdural space lies between the dura mater and the next meningial layer, the arachnoid mater. The subdural space is narrow potential space, where the two meningeal leayers lie in close proximity; but do not meet. The subdural space is thought to contain only lymph-like fluid. The meningeal layers can move apart in the event of injury or increased pressure; for example pooling of blood in the subdural space (subdural haematoma).
Arachnoid mater
This is the middle meningial layer and lies between the dura mater and the pia mater, the innermost meningeal layer. The arachnoid mater is a delicate structure and is constructed with non-vascular connective tissue. This layer also has small protrusions through the dura mater into the previously mentioned venous sinuses called Arachnoid villus and these allow cerebrospinal fluid (CSF) to enter and exit the blood stream. These protrusions adhere to the inner surface of the skull via calvaria processes.
Subarachnoid Space
The subarachnoid space lies between the arachnoid mater and pia mater. Both meninges are connected via a fine network of connective tissue filaments (spider web-like) which run through the space, originating from the arachnoid mater. This space also contains cerebrospinal fluid (CSF) from ventricular system. The largest parts of this space are called the cisterns, which are used for the collection of CSF. For example there is a cerebellomedullary cistern around the foramen magnum.
Pia Mater
This is the innermost layer and is firmly bound to the underlying neural tissue of the brain and spinal cord. The inner surface of the brain facing this meningial layer is lined with ependymal cells. The pia mater is highly vascular and is formed from delicate connective tissue. It also contains arteries and veins, but not venous sinuses.
Cerebrospinal Fluid
Cerebrospinal fluid (CSF) surrounds the brain and spinal cord. It helps cushion the central nervous system (CNS), acting in a similar manner to a shock absorber. It also acts as a chemical buffer providing immunological protection and a transport system for waste products and nutrients. The CSF also provides buoyancy to the soft neural tissues which effectively allows the neural tissue to "float" in the CSF. This prevents the brain tissue from becoming deformed under its own weight. It acts as a diffusion medium for the transport of neurotransmitters and neuroendocrine substances.
Production
CSF is a clear fluid produced by dialysis of blood in the choroid plexus. Choroid plexi are found in each lateral ventricle and a pair are in the third and fourth ventricle. Further production also comes from the ependymal cell linings and vessels within the pia mater.
Edendymal cell production of CSF is via ultrafiltration of blood plasma and active transport across the ependymal cells. The ependyma is connected via a series of tight junctions preventing molecules passing between cells. The ependyma also sits on a basement membrane to provide support to the ependymal cells and provide further protection against blood perfusion. In areas of the brain where there are choroid plexi, the endothelium of the plexus vessel sits immediately adjacent to the basement membrane of the ependymal cells. Of the total CSF production, 35% is produced within the third ventricle of the brain, 23% via the fourth ventricle and 42% from general ependymal cell filtration.
CSF has a very low protein constituent, with only albumin being present together with a very low level of cellularity. The biochemistry of CSF includes high concentrations of sodium and chloride and very high concentrations of magnesium. Concentrations of potassium, calcium and glucose are low.
Circulation
Once produced, CSF is then circulated, due to hydrostatic pressure, from the choroid plexus of the lateral ventricles, through the interventricular foramina into the 3rd ventricle. The lateral ventricles are paired and are located in the cerebral hemispheres. The 3rd ventricle is located in the diencephalon and surrounds the thalamus. CSF then flows through the cerebral aqueduct (aqueduct of Sylvius or mesencephalic aqueduct) into the 4th ventricle. The 4th ventricle is located in the hindbrain. From the 4th ventricle the CSF may flow down the central canal of the spinal cord, or circulate in the subarachnoid space. The central canal of the spinal cord is in direct communication with the 4th ventricle. Most CSF escapes from the ventricular system at the hindbrain Foramen of Luschka (lateral apertures) into the subarachnoid space. Once in the subarachnoid space, the CSF may enter the cerebromedullary cistern (a dilation of the subarachnoid space between the cerebellum and the medulla) and then circulate over the cerebral hemispheres. CSF also flows down the length of the spinal cord in the subarachnoid space. Another dilation of the subarachnoid space occurs caudally due to the dura and arachnoid meninges continuing on past the end of the spinal cord. This gives rise to the lumbar cistern.
Large amounts of CSF are drained into venous sinuses through arachnoid granulations in the dorsal sagittal sinus. The dorsal sagittal sinus is located between the folds of dura, known as the falx cerebri, covering each of the cerebral hemispheres. Arachnoid granulations contain many villi that are able to act as a one way valve helping to regulate pressure within the CSF, and these arachnoid villi push through the dura and into the venous sinuses.