Difference between revisions of "Sample Quiz"

From WikiVet English
Jump to navigation Jump to search
m (Text replace - "[[Macroscopic Renal Anatomy - Anatomy & Physiology" to "[[Renal Anatomy - Anatomy & Physiology")
 
(8 intermediate revisions by 2 users not shown)
Line 10: Line 10:
 
choice3="Juxtaglomerular apparatus"
 
choice3="Juxtaglomerular apparatus"
 
correctchoice="2"
 
correctchoice="2"
feedback2="'''Correct!''' The renal pelvis is the part of the ureter that the collecting tubules drain into, it is not part of a nephron. [[Microscopic Anatomy of the Nephron - Anatomy & Physiology|WikiVet Article: nephron]]."
+
feedback2="'''Correct!''' The renal pelvis is the part of the ureter that the collecting tubules drain into, it is not part of a nephron. [[Nephron Microscopic Anatomy |WikiVet Article:Nephron]]."
feedback4="'''Incorrect.''' The Bowman's capsule is the part of the nephron that, along with a glomerulus, makes up a renal corpuscle. [[Microscopic Anatomy of the Nephron - Anatomy & Physiology |WikiVet Article: nephron]]."
+
feedback4="'''Incorrect.''' The Bowman's capsule is the part of the nephron that, along with a glomerulus, makes up a renal corpuscle. [[Nephron Microscopic Anatomy |WikiVet Article:Nephron]]."
feedback1="'''Incorrect.''' The Loop of Henle is the part of the nephron made up of descending and ascending limbs. [[Microscopic Anatomy of the Nephron - Anatomy & Physiology|WikiVet Article: nephron]]."
+
feedback1="'''Incorrect.''' The Loop of Henle is the part of the nephron made up of descending and ascending limbs. [[Nephron Microscopic Anatomy |WikiVet Article:Nephron]]."
feedback5="'''Incorrect.''' The proximal convoluted tubule is the part of the nephron between the Bowman's capsule and Loop of Henle. [[Microscopic Anatomy of the Nephron - Anatomy & Physiology|WikiVet Article: nephron]]."
+
feedback5="'''Incorrect.''' The proximal convoluted tubule is the part of the nephron between the Bowman's capsule and Loop of Henle. [[Nephron Microscopic Anatomy |WikiVet Article:Nephron]]."
feedback3="'''Incorrect.''' The juxtaglomerular apparatus is a unique segment of the nephron where the thick ascending limb of the Loop of Henle passes between the afferent and efferent arterioles of its own glomerulus. [[Microscopic Anatomy of the Nephron - Anatomy & Physiology|WikiVet Article: nephron. ]]"
+
feedback3="'''Incorrect.''' The juxtaglomerular apparatus is a unique segment of the nephron where the thick ascending limb of the Loop of Henle passes between the afferent and efferent arterioles of its own glomerulus. [[Nephron Microscopic Anatomy |WikiVet Article:Nephron]]."
 
image= "">
 
image= "">
 
</WikiQuiz>
 
</WikiQuiz>
Line 26: Line 26:
 
choice3="Stratified squamous"
 
choice3="Stratified squamous"
 
correctchoice="1"
 
correctchoice="1"
feedback1="'''Correct!''' Transitional epithelium lines the renal pelvis, ureters and urinary bladder. [[Macroscopic Renal Anatomy - Anatomy & PhysiologyUreters - Anatomy & PhysiologyUrinary Bladder - Anatomy & Physiology|WikiVet Article:Renal pelvis, ureters, urinary bladder]]."
+
feedback1="'''Correct!''' Transitional epithelium lines the renal pelvis, ureters and urinary bladder. [[Renal Anatomy - Anatomy & Physiology|WikiVet Article:Renal Pelvis]] and [[Ureters - Anatomy & Physiology|Bladder]]."
feedback2="'''Incorrect.''' Transitional epithelium lines the renal pelvis, ureters and urinary bladder. [[Macroscopic Renal Anatomy - Anatomy & PhysiologyUreters - Anatomy & PhysiologyUrinary Bladder - Anatomy & Physiology|WikiVet Article:Renal pelvis, ureters, urinary bladder]]."
+
feedback2="'''Incorrect.''' Transitional epithelium lines the renal pelvis, ureters and urinary bladder. [[Renal Anatomy - Anatomy & Physiology|WikiVet Article:Renal Pelvis]] and [[Ureters - Anatomy & Physiology|Bladder]]."
feedback4="'''Incorrect.''' Transitional epithelium lines the renal pelvis, ureters and urinary bladder. [[Macroscopic Renal Anatomy - Anatomy & PhysiologyUreters - Anatomy & PhysiologyUrinary Bladder - Anatomy & Physiology|WikiVet Article:Renal pelvis, ureters, urinary bladder]]."
+
feedback4="'''Incorrect.''' Transitional epithelium lines the renal pelvis, ureters and urinary bladder. [[Renal Anatomy - Anatomy & Physiology|WikiVet Article:Renal Pelvis]] and [[Ureters - Anatomy & Physiology|Bladder]]."
feedback5="'''Incorrect.''' Transitional epithelium lines the renal pelvis, ureters and urinary bladder. [[Macroscopic Renal Anatomy - Anatomy & PhysiologyUreters - Anatomy & PhysiologyUrinary Bladder - Anatomy & Physiology|WikiVet Article:Renal pelvis, ureters, urinary bladder]]."
+
feedback5="'''Incorrect.''' Transitional epithelium lines the renal pelvis, ureters and urinary bladder. [[Renal Anatomy - Anatomy & Physiology|WikiVet Article:Renal Pelvis]] and [[Ureters - Anatomy & Physiology|Bladder]]."
feedback3="'''Incorrect.''' Transitional epithelium lines the renal pelvis, ureters and urinary bladder. [[Macroscopic Renal Anatomy - Anatomy & PhysiologyUreters - Anatomy & PhysiologyUrinary Bladder - Anatomy & Physiology|WikiVet Article:Renal pelvis, ureters, urinary bladder]]."
+
feedback3="'''Incorrect.''' Transitional epithelium lines the renal pelvis, ureters and urinary bladder. [[Renal Anatomy - Anatomy & Physiology|WikiVet Article:Renal Pelvis]] and [[Ureters - Anatomy & Physiology|Bladder]]."
 
image= "">
 
image= "">
 
</WikiQuiz>
 
</WikiQuiz>
Line 42: Line 42:
 
choice1="Renal pelvis"
 
choice1="Renal pelvis"
 
correctchoice="5"
 
correctchoice="5"
feedback5="'''Correct!''' Renal corpuscles are found in the renal cortex. [[Macroscopic Renal Anatomy - Anatomy & Physiology |WikiVet Article: macroscopic renal anatomy]]."
+
feedback5="'''Correct!''' Renal corpuscles are found in the renal cortex. [[Renal Anatomy - Anatomy & Physiology |WikiVet Article: macroscopic renal anatomy]]."
feedback3="'''Incorrect.''' The capsule is the connective tissue covering of the kidney. Renal corpuscles are present in the cortex. [[Macroscopic Renal Anatomy - Anatomy & Physiology|WikiVet Article: macroscopic renal anatomy]]."
+
feedback3="'''Incorrect.''' The capsule is the connective tissue covering of the kidney. Renal corpuscles are present in the cortex. [[Renal Anatomy - Anatomy & Physiology|WikiVet Article: macroscopic renal anatomy]]."
feedback4="'''Incorrect.''' The medulla is characterised by straight tubules, collecting ducts and a special capillary network, the vasa recta. Renal corpuscles are present in the cortex. [[Macroscopic Renal Anatomy - Anatomy & Physiology|WikiVet Article: macroscopic renal anatomy]]."
+
feedback4="'''Incorrect.''' The medulla is characterised by straight tubules, collecting ducts and a special capillary network, the vasa recta. Renal corpuscles are present in the cortex. [[Renal Anatomy - Anatomy & Physiology|WikiVet Article: macroscopic renal anatomy]]."
feedback2="'''Incorrect.''' The medulla is characterised by straight tubules, collecting ducts and a special capillary network, the vasa recta. Renal corpuscles are present in the cortex. [[Macroscopic Renal Anatomy - Anatomy & Physiology|WikiVet Article: macroscopic renal anatomy. ]]"
+
feedback2="'''Incorrect.''' The medulla is characterised by straight tubules, collecting ducts and a special capillary network, the vasa recta. Renal corpuscles are present in the cortex. [[Renal Anatomy - Anatomy & Physiology|WikiVet Article: macroscopic renal anatomy]]."
feedback1="'''Incorrect.''' The renal pelvis is a dilation of the proximal end of the ureter into which the collecting ducts open and urine drains. Renal corpuscles are present in the cortex. [[Macroscopic Renal Anatomy - Anatomy & Physiology|WikiVet Article: macroscopic renal anatomy]]."
+
feedback1="'''Incorrect.''' The renal pelvis is a dilation of the proximal end of the ureter into which the collecting ducts open and urine drains. Renal corpuscles are present in the cortex. [[Renal Anatomy - Anatomy & Physiology|WikiVet Article: macroscopic renal anatomy]]."
 
image= "">
 
image= "">
 
</WikiQuiz>
 
</WikiQuiz>
Line 59: Line 59:
 
correctchoice="4"
 
correctchoice="4"
 
feedback4="'''Correct!''' All major hormonal controls of reabsorption are exerted on these parts of the nephron. [[Aldosterone#Aldosterone |WikiVet Article: aldosterone]]."
 
feedback4="'''Correct!''' All major hormonal controls of reabsorption are exerted on these parts of the nephron. [[Aldosterone#Aldosterone |WikiVet Article: aldosterone]]."
feedback3="'''Incorrect.''' All major hormonal controls of reabsorption are exerted on the late distal convoluted tubule and the collecting ducts. [[Aldosterone#Aldosterone|WikiVet Article: aldosterone. ]]"
+
feedback3="'''Incorrect.''' All major hormonal controls of reabsorption are exerted on the late distal convoluted tubule and the collecting ducts. [[Aldosterone#Aldosterone|WikiVet Article: aldosterone]]."
feedback2="'''Incorrect.''' All major hormonal controls of reabsorption are exerted on the collecting ducts. [[Aldosterone#Aldosterone|WikiVet Article: aldosterone. ]]"
+
feedback2="'''Incorrect.''' All major hormonal controls of reabsorption are exerted on the collecting ducts. [[Aldosterone#Aldosterone|WikiVet Article: aldosterone]]."
feedback1="'''Incorrect.''' All major hormonal controls of reabsorption are exerted on the late distal convoluted tubule and the collecting ducts. [[Aldosterone#Aldosterone |WikiVet Article: aldosterone. ]]"
+
feedback1="'''Incorrect.''' All major hormonal controls of reabsorption are exerted on the late distal convoluted tubule and the collecting ducts. [[Aldosterone#Aldosterone |WikiVet Article: aldosterone]]."
feedback5="'''Incorrect.''' All major hormonal controls of reabsorption are exerted on the late distal convoluted tubule and the collecting ducts. [[Aldosterone#Aldosterone|WikiVet Article: aldosterone.]]"
+
feedback5="'''Incorrect.''' All major hormonal controls of reabsorption are exerted on the late distal convoluted tubule and the collecting ducts. [[Aldosterone#Aldosterone|WikiVet Article: aldosterone]]."
 
image= "">
 
image= "">
 
</WikiQuiz>
 
</WikiQuiz>
Line 74: Line 74:
 
choice1="Aorta, renal artery, interlobar artery, interlobular artery, afferent arteriole, glomerulus, interlobular artery."
 
choice1="Aorta, renal artery, interlobar artery, interlobular artery, afferent arteriole, glomerulus, interlobular artery."
 
correctchoice="4"
 
correctchoice="4"
feedback4="'''Correct!''' Each kidney is supplied by a renal artery, a branch of the abdominal aorta. The renal artery divides into several interlobar arteries. These give rise to arcuate arteries at the corticomedullary junction. These in turn give origin to numerous interlobular arteries that supply the lobules into which the cortex is divided. Each interlobular artery gives rise to many branches (afferent arterioles) that supply individual glomeruli. [[Macroscopic Renal Anatomy - Anatomy & Physiology|WikiVet Article:Renal blood supply]]."
+
feedback4="'''Correct!''' Each kidney is supplied by a renal artery, a branch of the abdominal aorta. The renal artery divides into several interlobar arteries. These give rise to arcuate arteries at the corticomedullary junction. These in turn give origin to numerous interlobular arteries that supply the lobules into which the cortex is divided. Each interlobular artery gives rise to many branches (afferent arterioles) that supply individual glomeruli. [[Renal Anatomy - Anatomy & Physiology|WikiVet Article:Renal blood supply]]."
feedback5="'''Incorrect.''' Each kidney is supplied by a renal artery, a branch of the abdominal aorta. The renal artery divides into several interlobar arteries. These give rise to arcuate arteries at the corticomedullary junction. These in turn give origin to numerous interlobular arteries that supply the lobules into which the cortex is divided. Each interlobular artery gives rise to many branches (afferent arterioles) that supply individual glomeruli. The internal iliac artery gives rise to the internal pudendal artery. [[Macroscopic Renal Anatomy - Anatomy & Physiology|WikiVet Article:Renal blood supply]]."
+
feedback5="'''Incorrect.''' Each kidney is supplied by a renal artery, a branch of the abdominal aorta. The renal artery divides into several interlobar arteries. These give rise to arcuate arteries at the corticomedullary junction. These in turn give origin to numerous interlobular arteries that supply the lobules into which the cortex is divided. Each interlobular artery gives rise to many branches (afferent arterioles) that supply individual glomeruli. The internal iliac artery gives rise to the internal pudendal artery. [[Renal Anatomy - Anatomy & Physiology|WikiVet Article:Renal blood supply]]."
feedback3="'''Incorrect.''' Each kidney is supplied by a renal artery, a branch of the abdominal aorta. The renal artery divides into several interlobar arteries. These give rise to arcuate arteries at the corticomedullary junction. These in turn give origin to numerous interlobular arteries that supply the lobules into which the cortex is divided. Each interlobular artery gives rise to many branches (afferent arterioles) that supply individual glomeruli. [[Macroscopic Renal Anatomy - Anatomy & Physiology|WikiVet Article:Renal blood supply]]."
+
feedback3="'''Incorrect.''' Each kidney is supplied by a renal artery, a branch of the abdominal aorta. The renal artery divides into several interlobar arteries. These give rise to arcuate arteries at the corticomedullary junction. These in turn give origin to numerous interlobular arteries that supply the lobules into which the cortex is divided. Each interlobular artery gives rise to many branches (afferent arterioles) that supply individual glomeruli. [[Renal Anatomy - Anatomy & Physiology|WikiVet Article:Renal blood supply]]."
feedback2="'''Incorrect.''' Each kidney is supplied by a renal artery, a branch of the abdominal aorta. The renal artery divides into several interlobar arteries. These give rise to arcuate arteries at the corticomedullary junction. These in turn give origin to numerous interlobular arteries that supply the lobules into which the cortex is divided. Each interlobular artery gives rise to many branches (afferent arterioles) that supply individual glomeruli. [[Macroscopic Renal Anatomy - Anatomy & Physiology|WikiVet Article:Renal blood supply]]."
+
feedback2="'''Incorrect.''' Each kidney is supplied by a renal artery, a branch of the abdominal aorta. The renal artery divides into several interlobar arteries. These give rise to arcuate arteries at the corticomedullary junction. These in turn give origin to numerous interlobular arteries that supply the lobules into which the cortex is divided. Each interlobular artery gives rise to many branches (afferent arterioles) that supply individual glomeruli. [[Renal Anatomy - Anatomy & Physiology|WikiVet Article:Renal blood supply]]."
feedback1="'''Incorrect.''' Each kidney is supplied by a renal artery, a branch of the abdominal aorta. The renal artery divides into several interlobar arteries. These give rise to arcuate arteries at the corticomedullary junction. These in turn give origin to numerous interlobular arteries that supply the lobules into which the cortex is divided. Each interlobular artery gives rise to many branches (afferent arterioles) that supply individual glomeruli. [[Macroscopic Renal Anatomy - Anatomy & Physiology|WikiVet Article:Renal blood supply]]."
+
feedback1="'''Incorrect.''' Each kidney is supplied by a renal artery, a branch of the abdominal aorta. The renal artery divides into several interlobar arteries. These give rise to arcuate arteries at the corticomedullary junction. These in turn give origin to numerous interlobular arteries that supply the lobules into which the cortex is divided. Each interlobular artery gives rise to many branches (afferent arterioles) that supply individual glomeruli. [[Renal Anatomy - Anatomy & Physiology|WikiVet Article:Renal blood supply]]."
 
image= "">
 
image= "">
 
</WikiQuiz>  
 
</WikiQuiz>  
Line 90: Line 90:
 
choice4="Thalamus"
 
choice4="Thalamus"
 
correctchoice="5"
 
correctchoice="5"
feedback5="'''Correct!''' The micturition centre is located in the pons. It responds to sensory information from bladder stretch receptors by co-ordinating relaxation of the urethralis muscle along with detrusor contraction to produce emptying of the bladder. [[Process of Micturition - Anatomy & Physiology|WikiVet Article: pons]]."
+
feedback5="'''Correct!''' The micturition centre is located in the pons. It responds to sensory information from bladder stretch receptors by co-ordinating relaxation of the urethralis muscle along with detrusor contraction to produce emptying of the bladder. [[Micturition - Anatomy & Physiology|WikiVet Article: pons]]."
feedback1="'''Incorrect.''' The micturition centre is located in the pons. It responds to sensory information from bladder stretch receptors by co-ordinating relaxation of the urethralis muscle along with detrusor contraction to produce emptying of the bladder. [[Process of Micturition - Anatomy & Physiology |WikiVet Article: pons]]."
+
feedback1="'''Incorrect.''' The micturition centre is located in the pons. It responds to sensory information from bladder stretch receptors by co-ordinating relaxation of the urethralis muscle along with detrusor contraction to produce emptying of the bladder. [[Micturition - Anatomy & Physiology|WikiVet Article: pons]]."
feedback2="'''Incorrect.''' The micturition centre is located in the pons. It responds to sensory information from bladder stretch receptors by co-ordinating relaxation of the urethralis muscle along with detrusor contraction to produce emptying of the bladder. [[Process of Micturition - Anatomy & Physiology |WikiVet Article: pons]]."
+
feedback2="'''Incorrect.''' The micturition centre is located in the pons. It responds to sensory information from bladder stretch receptors by co-ordinating relaxation of the urethralis muscle along with detrusor contraction to produce emptying of the bladder. [[Micturition - Anatomy & Physiology|WikiVet Article: pons]]."
feedback3="'''Incorrect.''' The micturition centre is located in the pons. It responds to sensory information from bladder stretch receptors by co-ordinating relaxation of the urethralis muscle along with detrusor contraction to produce emptying of the bladder. [[Process of Micturition - Anatomy & Physiology|WikiVet Article: pons]]."
+
feedback3="'''Incorrect.''' The micturition centre is located in the pons. It responds to sensory information from bladder stretch receptors by co-ordinating relaxation of the urethralis muscle along with detrusor contraction to produce emptying of the bladder. [[Micturition - Anatomy & Physiology|WikiVet Article: pons]]."
feedback4="'''Incorrect.''' The micturition centre is located in the pons. It responds to sensory information from bladder stretch receptors by co-ordinating relaxation of the urethralis muscle along with detrusor contraction to produce emptying of the bladder. [[Process of Micturition - Anatomy & Physiology|WikiVet Article: pons]]."
+
feedback4="'''Incorrect.''' The micturition centre is located in the pons. It responds to sensory information from bladder stretch receptors by co-ordinating relaxation of the urethralis muscle along with detrusor contraction to produce emptying of the bladder. [[Micturition - Anatomy & Physiology|WikiVet Article: pons]]."
 
image= "">
 
image= "">
 
</WikiQuiz>
 
</WikiQuiz>
Line 106: Line 106:
 
choice2="The detrusor muscle is relaxed."
 
choice2="The detrusor muscle is relaxed."
 
correctchoice="5"
 
correctchoice="5"
feedback5="'''Correct!''' The parasympathetic nervous system is dominant in the emptying phase which requires contraction of the detrusor muscle and inhibition of the pudendal nerve, thus causing relaxation of the urethralis muscle. [[Process of Micturition - Anatomy & Physiology |WikiVet Article: parasympathetic dominance. ]]"
+
feedback5="'''Correct!''' The parasympathetic nervous system is dominant in the emptying phase which requires contraction of the detrusor muscle and inhibition of the pudendal nerve, thus causing relaxation of the urethralis muscle. [[Micturition - Anatomy & Physiology|WikiVet Article: parasympathetic dominance]]."
feedback4="'''Incorrect.''' This occurs during the storage phase when the sympathetic nervous system is dominant. When the parasympathetic nervous system is dominant there is contraction of the detrusor muscle and inhibition of the pudendal nerve. [[Process of Micturition - Anatomy & Physiology |WikiVet Article: parasympathetic dominance. ]]"
+
feedback4="'''Incorrect.''' This occurs during the storage phase when the sympathetic nervous system is dominant. When the parasympathetic nervous system is dominant there is contraction of the detrusor muscle and inhibition of the pudendal nerve. [[Micturition - Anatomy & Physiology|WikiVet Article: parasympathetic dominance]]."
feedback1="'''Incorrect.''' This occurs during the storage phase when the sympathetic nervous system is dominant. When the parasympathetic nervous system is dominant there is contraction of the detrusor muscle and inhibition of the pudendal nerve. [[Process of Micturition - Anatomy & Physiology|WikiVet Article: parasympathetic dominance. ]]"
+
feedback1="'''Incorrect.''' This occurs during the storage phase when the sympathetic nervous system is dominant. When the parasympathetic nervous system is dominant there is contraction of the detrusor muscle and inhibition of the pudendal nerve. [[Micturition - Anatomy & Physiology|WikiVet Article: parasympathetic dominance]]."
feedback3="'''Incorrect.''' This occurs during the storage phase when the sympathetic nervous system is dominant. When the parasympathetic nervous system is dominant there is contraction of the detrusor muscle and inhibition of the pudendal nerve. [[Process of Micturition - Anatomy & Physiology|WikiVet Article: parasympathetic dominance]]."
+
feedback3="'''Incorrect.''' This occurs during the storage phase when the sympathetic nervous system is dominant. When the parasympathetic nervous system is dominant there is contraction of the detrusor muscle and inhibition of the pudendal nerve. [[Micturition - Anatomy & Physiology|WikiVet Article: parasympathetic dominance]]."
feedback2="'''Incorrect.''' This occurs during the storage phase when the sympathetic nervous system is dominant. When the parasympathetic nervous system is dominant there is contraction of the detrusor muscle and inhibition of the pudendal nerve. [[Process of Micturition - Anatomy & Physiology|WikiVet Article: parasympathetic dominance. ]]"
+
feedback2="'''Incorrect.''' This occurs during the storage phase when the sympathetic nervous system is dominant. When the parasympathetic nervous system is dominant there is contraction of the detrusor muscle and inhibition of the pudendal nerve. [[Micturition - Anatomy & Physiology|WikiVet Article: parasympathetic dominance]]."
 
image= "">
 
image= "">
 
</WikiQuiz>
 
</WikiQuiz>
Line 138: Line 138:
 
choice3="GFR is the fluid filtered from the glomeruli into Bowman's space, plus the fluid secreted into the nephron, minus the fluid reabsorbed from the nephron into the peritubular capillary network."
 
choice3="GFR is the fluid filtered from the glomeruli into Bowman's space, plus the fluid secreted into the nephron, minus the fluid reabsorbed from the nephron into the peritubular capillary network."
 
correctchoice="4"
 
correctchoice="4"
feedback4="'''Correct!''' The GFR is the volume of fluid filtered from the glomeruli into the Bowman's space per unit time. [[The Formation of the Filtrate by the Glomerular Apparatus- Anatomy & Physiology#Physiological Regulators of GFR|WikiVet Article: GFR]]."
+
feedback4="'''Correct!''' The GFR is the volume of fluid filtered from the glomeruli into the Bowman's space per unit time. [[Glomerular Apparatus and Filtration - Anatomy & Physiology#Physiological Regulators of GFR|WikiVet Article: GFR]]."
feedback5="'''Incorrect.''' The volume of fluid flowing through the glomerulus per unit time is the rate of blood flow through the glomerulus. The GFR is the volume of fluid filtered from the glomeruli into the Bowman's space per unit time. [[The Formation of the Filtrate by the Glomerular Apparatus- Anatomy & Physiology#Physiological Regulators of GFR|WikiVet Article: GFR]]."
+
feedback5="'''Incorrect.''' The volume of fluid flowing through the glomerulus per unit time is the rate of blood flow through the glomerulus. The GFR is the volume of fluid filtered from the glomeruli into the Bowman's space per unit time. [[Glomerular Apparatus and Filtration - Anatomy & Physiology#Physiological Regulators of GFR|WikiVet Article: GFR]]."
feedback1="'''Incorrect.''' The direction of fluid flow is from the glomeruli into Bowman's space. The GFR is the volume of fluid filtered from the glomeruli into the Bowman's space per unit time. [[The Formation of the Filtrate by the Glomerular Apparatus- Anatomy & Physiology#Physiological Regulators of GFR|WikiVet Article: GFR. ]]"
+
feedback1="'''Incorrect.''' The direction of fluid flow is from the glomeruli into Bowman's space. The GFR is the volume of fluid filtered from the glomeruli into the Bowman's space per unit time. [[Glomerular Apparatus and Filtration - Anatomy & Physiology#Physiological Regulators of GFR|WikiVet Article: GFR]]."
feedback2="'''Incorrect.''' The volume of fluid excreted by the kidney per unit time is the urine flow rate. The GFR is the volume of fluid filtered from the glomeruli into the Bowman's space per unit time. [[The Formation of the Filtrate by the Glomerular Apparatus- Anatomy & Physiology#Physiological Regulators of GFR|WikiVet Article: GFR]]."
+
feedback2="'''Incorrect.''' The volume of fluid excreted by the kidney per unit time is the urine flow rate. The GFR is the volume of fluid filtered from the glomeruli into the Bowman's space per unit time. [[Glomerular Apparatus and Filtration - Anatomy & Physiology#Physiological Regulators of GFR|WikiVet Article: GFR]]."
feedback3="'''Incorrect.''' The fluid filtered from the glomeruli into Bowman's space, plus the fluid secreted into the nephron, minus the fluid reabsorbed from the nephron into the peritubular capillary network is the volume of fluid excreted by the kidney. The GFR is the volume of fluid filtered from the glomeruli into the Bowman's space per unit time. [[The Formation of the Filtrate by the Glomerular Apparatus- Anatomy & Physiology#Physiological Regulators of GFR|WikiVet Article: GFR]]."
+
feedback3="'''Incorrect.''' The fluid filtered from the glomeruli into Bowman's space, plus the fluid secreted into the nephron, minus the fluid reabsorbed from the nephron into the peritubular capillary network is the volume of fluid excreted by the kidney. The GFR is the volume of fluid filtered from the glomeruli into the Bowman's space per unit time. [[Glomerular Apparatus and Filtration - Anatomy & Physiology#Physiological Regulators of GFR|WikiVet Article: GFR]]."
 
image= "">
 
image= "">
 
</WikiQuiz>
 
</WikiQuiz>
Line 170: Line 170:
 
choice3="There is a large amount of protein reabsorbed in the nephron."
 
choice3="There is a large amount of protein reabsorbed in the nephron."
 
correctchoice="1"
 
correctchoice="1"
feedback1="'''Correct!''' Most proteins are too large to be filtered and therefore remain in the glomerular capillary. Large proteins are not filtered into Bowman's capsule unless a component of the filtration barrier (e.g. the glomerular basement membrane) is damaged. [[The Formation of the Filtrate by the Glomerular Apparatus- Anatomy & Physiology#Glomerular Filtration |WikiVet Article: glomerular filtration]]."
+
feedback1="'''Correct!''' Most proteins are too large to be filtered and therefore remain in the glomerular capillary. Large proteins are not filtered into Bowman's capsule unless a component of the filtration barrier (e.g. the glomerular basement membrane) is damaged. [[Glomerular Apparatus and Filtration - Anatomy & Physiology#Glomerular Filtration |WikiVet Article: glomerular filtration]]."
feedback2="'''Incorrect.''' Most proteins are too large to be filtered and therefore remain in the glomerular capillary. Large proteins are not filtered into Bowman's capsule unless a component of the filtration barrier (e.g. the glomerular basement membrane) is damaged in which case the oncotic pressure would be higher than zero. Oncotic pressure in the Bowman's capsule is normally zero because filtered fluid is essentially protein free. [[The Formation of the Filtrate by the Glomerular Apparatus- Anatomy & Physiology#Glomerular Filtration|WikiVet Article: glomerular filtration]]."
+
feedback2="'''Incorrect.''' Most proteins are too large to be filtered and therefore remain in the glomerular capillary. Large proteins are not filtered into Bowman's capsule unless a component of the filtration barrier (e.g. the glomerular basement membrane) is damaged in which case the oncotic pressure would be higher than zero. Oncotic pressure in the Bowman's capsule is normally zero because filtered fluid is essentially protein free. [[Glomerular Apparatus and Filtration - Anatomy & Physiology#Glomerular Filtration|WikiVet Article: glomerular filtration]]."
feedback5="'''Incorrect.''' There is high hydrostatic pressure in the capillaries causing filtration into the Bowman's space because there is low hydrostatic pressure in the Bowman's space. Oncotic pressure in the Bowman's capsule is normally zero because filtered fluid is essentially protein free. [[The Formation of the Filtrate by the Glomerular Apparatus- Anatomy & Physiology#Glomerular Filtration|WikiVet Article: glomerular filtration]]."
+
feedback5="'''Incorrect.''' There is high hydrostatic pressure in the capillaries causing filtration into the Bowman's space because there is low hydrostatic pressure in the Bowman's space. Oncotic pressure in the Bowman's capsule is normally zero because filtered fluid is essentially protein free. [[Glomerular Apparatus and Filtration - Anatomy & Physiology#Glomerular Filtration|WikiVet Article: glomerular filtration]]."
feedback4="'''Incorrect.''' Hydrostatic pressure does not directly affect oncotic pressure. Most proteins are too large to be filtered and therefore remain in the glomerular capillary. Large proteins are not filtered into Bowman's capsule unless a component of the filtration barrier (e.g. the glomerular basement membrane) is damaged. Oncotic pressure in the Bowman's capsule is normally zero because filtered fluid is essentially protein free. [[The Formation of the Filtrate by the Glomerular Apparatus- Anatomy & Physiology#Glomerular Filtration|WikiVet Article: glomerular filtration]]."
+
feedback4="'''Incorrect.''' Hydrostatic pressure does not directly affect oncotic pressure. Most proteins are too large to be filtered and therefore remain in the glomerular capillary. Large proteins are not filtered into Bowman's capsule unless a component of the filtration barrier (e.g. the glomerular basement membrane) is damaged. Oncotic pressure in the Bowman's capsule is normally zero because filtered fluid is essentially protein free. [[Glomerular Apparatus and Filtration - Anatomy & Physiology#Glomerular Filtration|WikiVet Article: glomerular filtration]]."
feedback3="'''Incorrect.''' Large amounts of protein are not capable of being reabsorbed from the nephron back into the blood. Most proteins are too large to be filtered and therefore remain in the glomerular capillary. Large proteins are not filtered into Bowman's capsule unless a component of the filtration barrier (e.g. the glomerular basement membrane) is damaged. Oncotic pressure in the Bowman's capsule is normally zero because filtered fluid is essentially protein free. [[The Formation of the Filtrate by the Glomerular Apparatus- Anatomy & Physiology#Glomerular Filtration|WikiVet Article: glomerular filtration]]."
+
feedback3="'''Incorrect.''' Large amounts of protein are not capable of being reabsorbed from the nephron back into the blood. Most proteins are too large to be filtered and therefore remain in the glomerular capillary. Large proteins are not filtered into Bowman's capsule unless a component of the filtration barrier (e.g. the glomerular basement membrane) is damaged. Oncotic pressure in the Bowman's capsule is normally zero because filtered fluid is essentially protein free. [[Glomerular Apparatus and Filtration - Anatomy & Physiology#Glomerular Filtration|WikiVet Article: glomerular filtration]]."
 
image= "">
 
image= "">
 
</WikiQuiz>
 
</WikiQuiz>
Line 186: Line 186:
 
choice2="The late distal convoluted tubule and collecting duct."
 
choice2="The late distal convoluted tubule and collecting duct."
 
correctchoice="5"
 
correctchoice="5"
feedback5="'''Correct!''' Sodium, chloride and potassium ions are principally reabsorbed in the proximal convoluted tubule- about 65% of the total reabsorption occures here. [[Reabsorption and Secretion Along the Proximal Tubule - Anatomy & Physiology|WikiVet Article: proximal convoluted tubule. ]]"
+
feedback5="'''Correct!''' Sodium, chloride and potassium ions are principally reabsorbed in the proximal convoluted tubule- about 65% of the total reabsorption occures here. [[Reabsorption and Secretion Along the Proximal Tubule - Anatomy & Physiology|WikiVet Article: proximal convoluted tubule]]."
 
feedback1="'''Incorrect.''' The descending limb of the loop of Henle is impermeable to electrolytes. Sodium, chloride and potassium ions are mainly reabsorbed in the proximal convoluted tubule. [[Reabsorption and Secretion Along the Proximal Tubule - Anatomy & PhysiologyReabsorption and Secretion Along the Loop of Henle - Anatomy & Physiology|WikiVet Article: proximal convoluted tubule, loop of Henle]]."
 
feedback1="'''Incorrect.''' The descending limb of the loop of Henle is impermeable to electrolytes. Sodium, chloride and potassium ions are mainly reabsorbed in the proximal convoluted tubule. [[Reabsorption and Secretion Along the Proximal Tubule - Anatomy & PhysiologyReabsorption and Secretion Along the Loop of Henle - Anatomy & Physiology|WikiVet Article: proximal convoluted tubule, loop of Henle]]."
 
feedback4="'''Incorrect.''' In the ascending limb of the loop of Henle sodium, potassium and chloride ions are coupled and actively transported out of the lumen (symport). Sodium, chloride and potassium ions are passively reabsorbed in the proximal convoluted tubule. [[Reabsorption and Secretion Along the Proximal Tubule - Anatomy & PhysiologyReabsorption and Secretion Along the Loop of Henle - Anatomy & Physiology|WikiVet Article: proximal convoluted tubule, loop of Henle]]."
 
feedback4="'''Incorrect.''' In the ascending limb of the loop of Henle sodium, potassium and chloride ions are coupled and actively transported out of the lumen (symport). Sodium, chloride and potassium ions are passively reabsorbed in the proximal convoluted tubule. [[Reabsorption and Secretion Along the Proximal Tubule - Anatomy & PhysiologyReabsorption and Secretion Along the Loop of Henle - Anatomy & Physiology|WikiVet Article: proximal convoluted tubule, loop of Henle]]."
feedback3="'''Incorrect.''' In the distal convoluted tubule chloride ions are transported with sodium ions (symport). Sodium, chloride and potassium ions are mainly reabsorbed in the proximal convoluted tubule. [[Reabsorption and Secretion Along the Proximal Tubule - Anatomy & PhysiologyReabsorption and Secretion Along the Distal Tubule and Collecting Duct - Anatomy & Physiology#Distal Tubule|WikiVet Article: proximal convoluted tubule, distal convoluted tubule ]]"
+
feedback3="'''Incorrect.''' In the distal convoluted tubule chloride ions are transported with sodium ions (symport). Sodium, chloride and potassium ions are mainly reabsorbed in the proximal convoluted tubule. [[Reabsorption and Secretion Along the Proximal Tubule - Anatomy & PhysiologyReabsorption and Secretion Along the Distal Tubule and Collecting Duct - Anatomy & Physiology#Distal Tubule|WikiVet Article: proximal convoluted tubule, distal convoluted tubule ]]."
 
feedback2="'''Incorrect.''' In the late distal tubule and collecting duct potassium is actively secreted and aldosterone acts to increase sodium absorption and potassium excretion. Sodium, chloride and potassium ions are mainly reabsorbed in the proximal convoluted tubule. [[Reabsorption and Secretion Along the Distal Tubule and Collecting Duct - Anatomy & Physiology#Distal Tubule|WikiVet Article: proximal convoluted tubule, collecting duct]]."
 
feedback2="'''Incorrect.''' In the late distal tubule and collecting duct potassium is actively secreted and aldosterone acts to increase sodium absorption and potassium excretion. Sodium, chloride and potassium ions are mainly reabsorbed in the proximal convoluted tubule. [[Reabsorption and Secretion Along the Distal Tubule and Collecting Duct - Anatomy & Physiology#Distal Tubule|WikiVet Article: proximal convoluted tubule, collecting duct]]."
 
image= "">
 
image= "">

Latest revision as of 14:08, 10 December 2010

A sample quiz taken from 'Urinary Anatomy and Physiology' section.


1

Which of the following structures is NOT a segment of a nephron?

Please select an option Incorrect. The Loop of Henle is the part of the nephron made up of descending and ascending limbs. WikiVet Article:Nephron. Correct! The renal pelvis is the part of the ureter that the collecting tubules drain into, it is not part of a nephron. WikiVet Article:Nephron. Incorrect. The juxtaglomerular apparatus is a unique segment of the nephron where the thick ascending limb of the Loop of Henle passes between the afferent and efferent arterioles of its own glomerulus. WikiVet Article:Nephron. Incorrect. The Bowman's capsule is the part of the nephron that, along with a glomerulus, makes up a renal corpuscle. WikiVet Article:Nephron. Incorrect. The proximal convoluted tubule is the part of the nephron between the Bowman's capsule and Loop of Henle. WikiVet Article:Nephron.

Reveal Feedback

2

What type of epithelium lines the renal pelvis, ureters and urinary bladder?

Please select an option Correct! Transitional epithelium lines the renal pelvis, ureters and urinary bladder. WikiVet Article:Renal Pelvis and Bladder. Incorrect. Transitional epithelium lines the renal pelvis, ureters and urinary bladder. WikiVet Article:Renal Pelvis and Bladder. Incorrect. Transitional epithelium lines the renal pelvis, ureters and urinary bladder. WikiVet Article:Renal Pelvis and Bladder. Incorrect. Transitional epithelium lines the renal pelvis, ureters and urinary bladder. WikiVet Article:Renal Pelvis and Bladder. Incorrect. Transitional epithelium lines the renal pelvis, ureters and urinary bladder. WikiVet Article:Renal Pelvis and Bladder.

Reveal Feedback

3

Renal corpuscles are present in which part of the kidney's structure?

Please select an option Incorrect. The renal pelvis is a dilation of the proximal end of the ureter into which the collecting ducts open and urine drains. Renal corpuscles are present in the cortex. WikiVet Article: macroscopic renal anatomy. Incorrect. The medulla is characterised by straight tubules, collecting ducts and a special capillary network, the vasa recta. Renal corpuscles are present in the cortex. WikiVet Article: macroscopic renal anatomy. Incorrect. The capsule is the connective tissue covering of the kidney. Renal corpuscles are present in the cortex. WikiVet Article: macroscopic renal anatomy. Incorrect. The medulla is characterised by straight tubules, collecting ducts and a special capillary network, the vasa recta. Renal corpuscles are present in the cortex. WikiVet Article: macroscopic renal anatomy. Correct! Renal corpuscles are found in the renal cortex. WikiVet Article: macroscopic renal anatomy.

Reveal Feedback

4

On which section of the nephron does aldosterone act to stimulate sodium reabsorption?

Please select an option Incorrect. All major hormonal controls of reabsorption are exerted on the late distal convoluted tubule and the collecting ducts. WikiVet Article: aldosterone. Incorrect. All major hormonal controls of reabsorption are exerted on the collecting ducts. WikiVet Article: aldosterone. Incorrect. All major hormonal controls of reabsorption are exerted on the late distal convoluted tubule and the collecting ducts. WikiVet Article: aldosterone. Correct! All major hormonal controls of reabsorption are exerted on these parts of the nephron. WikiVet Article: aldosterone. Incorrect. All major hormonal controls of reabsorption are exerted on the late distal convoluted tubule and the collecting ducts. WikiVet Article: aldosterone.

Reveal Feedback

5

What is the sequence of blood vessels supplying the kidney?

Please select an option Incorrect. Each kidney is supplied by a renal artery, a branch of the abdominal aorta. The renal artery divides into several interlobar arteries. These give rise to arcuate arteries at the corticomedullary junction. These in turn give origin to numerous interlobular arteries that supply the lobules into which the cortex is divided. Each interlobular artery gives rise to many branches (afferent arterioles) that supply individual glomeruli. WikiVet Article:Renal blood supply. Incorrect. Each kidney is supplied by a renal artery, a branch of the abdominal aorta. The renal artery divides into several interlobar arteries. These give rise to arcuate arteries at the corticomedullary junction. These in turn give origin to numerous interlobular arteries that supply the lobules into which the cortex is divided. Each interlobular artery gives rise to many branches (afferent arterioles) that supply individual glomeruli. WikiVet Article:Renal blood supply. Incorrect. Each kidney is supplied by a renal artery, a branch of the abdominal aorta. The renal artery divides into several interlobar arteries. These give rise to arcuate arteries at the corticomedullary junction. These in turn give origin to numerous interlobular arteries that supply the lobules into which the cortex is divided. Each interlobular artery gives rise to many branches (afferent arterioles) that supply individual glomeruli. WikiVet Article:Renal blood supply. Correct! Each kidney is supplied by a renal artery, a branch of the abdominal aorta. The renal artery divides into several interlobar arteries. These give rise to arcuate arteries at the corticomedullary junction. These in turn give origin to numerous interlobular arteries that supply the lobules into which the cortex is divided. Each interlobular artery gives rise to many branches (afferent arterioles) that supply individual glomeruli. WikiVet Article:Renal blood supply. Incorrect. Each kidney is supplied by a renal artery, a branch of the abdominal aorta. The renal artery divides into several interlobar arteries. These give rise to arcuate arteries at the corticomedullary junction. These in turn give origin to numerous interlobular arteries that supply the lobules into which the cortex is divided. Each interlobular artery gives rise to many branches (afferent arterioles) that supply individual glomeruli. The internal iliac artery gives rise to the internal pudendal artery. WikiVet Article:Renal blood supply.

Reveal Feedback

6

Where is the micturition centre located?

Please select an option Incorrect. The micturition centre is located in the pons. It responds to sensory information from bladder stretch receptors by co-ordinating relaxation of the urethralis muscle along with detrusor contraction to produce emptying of the bladder. WikiVet Article: pons. Incorrect. The micturition centre is located in the pons. It responds to sensory information from bladder stretch receptors by co-ordinating relaxation of the urethralis muscle along with detrusor contraction to produce emptying of the bladder. WikiVet Article: pons. Incorrect. The micturition centre is located in the pons. It responds to sensory information from bladder stretch receptors by co-ordinating relaxation of the urethralis muscle along with detrusor contraction to produce emptying of the bladder. WikiVet Article: pons. Incorrect. The micturition centre is located in the pons. It responds to sensory information from bladder stretch receptors by co-ordinating relaxation of the urethralis muscle along with detrusor contraction to produce emptying of the bladder. WikiVet Article: pons. Correct! The micturition centre is located in the pons. It responds to sensory information from bladder stretch receptors by co-ordinating relaxation of the urethralis muscle along with detrusor contraction to produce emptying of the bladder. WikiVet Article: pons.

Reveal Feedback

7

What happens during the phase of micturition when the parasympathetic nervous system is dominant?

Please select an option Incorrect. This occurs during the storage phase when the sympathetic nervous system is dominant. When the parasympathetic nervous system is dominant there is contraction of the detrusor muscle and inhibition of the pudendal nerve. WikiVet Article: parasympathetic dominance. Incorrect. This occurs during the storage phase when the sympathetic nervous system is dominant. When the parasympathetic nervous system is dominant there is contraction of the detrusor muscle and inhibition of the pudendal nerve. WikiVet Article: parasympathetic dominance. Incorrect. This occurs during the storage phase when the sympathetic nervous system is dominant. When the parasympathetic nervous system is dominant there is contraction of the detrusor muscle and inhibition of the pudendal nerve. WikiVet Article: parasympathetic dominance. Incorrect. This occurs during the storage phase when the sympathetic nervous system is dominant. When the parasympathetic nervous system is dominant there is contraction of the detrusor muscle and inhibition of the pudendal nerve. WikiVet Article: parasympathetic dominance. Correct! The parasympathetic nervous system is dominant in the emptying phase which requires contraction of the detrusor muscle and inhibition of the pudendal nerve, thus causing relaxation of the urethralis muscle. WikiVet Article: parasympathetic dominance.

Reveal Feedback

8

The role of the juxtaglomerular apparatus in the kidney is to synthesise and secrete which enzyme?

Please select an option Incorrect. Angiotensin II is produced when angiotensin I, in the circulation, is acted on by angiotensin converting enzyme, which is found mostly in the lungs. The correct answer is renin. WikiVet Article: juxtaglomerular apparatus, angiotensin 2. Correct! The vascular elements of the juxtaglomerular apparatus contain modifed smooth muscle cells of the arterioles which contain secretory granules that synthesise and secrete the enzyme renin. WikiVet Article: juxtaglomerular apparatus. Incorrect. Aldosterone is synthesised by and secreted from cells of the zona glomerulosa of the adrenal gland. The correct answer is renin. WikiVet Article: juxtaglomerular apparatus, adrenal gland. Incorrect. ADH is synthesised by cell bodies of the paraventricular and supraoptic nuclei of the hypothalamus, and is secreted from the posterior lobe of the pituitary gland. The correct answer is renin. WikiVet Article: juxtaglomerular apparatus, hypothalamus. Incorrect. ANP is synthesised and secreted by cells in the cardiac atria. The correct answer is renin. WikiVet Article: juxtaglomerular apparatus, atria.

Reveal Feedback

9

What is the glomerular filtration rate (GFR)?

Please select an option Incorrect. The direction of fluid flow is from the glomeruli into Bowman's space. The GFR is the volume of fluid filtered from the glomeruli into the Bowman's space per unit time. WikiVet Article: GFR. Incorrect. The volume of fluid excreted by the kidney per unit time is the urine flow rate. The GFR is the volume of fluid filtered from the glomeruli into the Bowman's space per unit time. WikiVet Article: GFR. Incorrect. The fluid filtered from the glomeruli into Bowman's space, plus the fluid secreted into the nephron, minus the fluid reabsorbed from the nephron into the peritubular capillary network is the volume of fluid excreted by the kidney. The GFR is the volume of fluid filtered from the glomeruli into the Bowman's space per unit time. WikiVet Article: GFR. Correct! The GFR is the volume of fluid filtered from the glomeruli into the Bowman's space per unit time. WikiVet Article: GFR. Incorrect. The volume of fluid flowing through the glomerulus per unit time is the rate of blood flow through the glomerulus. The GFR is the volume of fluid filtered from the glomeruli into the Bowman's space per unit time. WikiVet Article: GFR.

Reveal Feedback

10

The descending limb of the loop of Henle is freely permeable to which substance(s)?

Please select an option Incorrect. The descending limb of the loop of Henle is impermeable to glucose. It is freely permeable to water. WikiVet Article: loop of Henle. Incorrect. The descending limb of the loop of Henle is impermeable to electrolytes and they become concentrated in the lumen. It is freely permeable to water. WikiVet Article: loop of Henle. Incorrect. The descending limb of the loop of Henle is impermeable to amino acids. It is freely permeable to water. WikiVet Article: loop of Henle. Correct! The descending limb of the loop of Henle is freely permeable to water. WikiVet Article: loop of Henle. Incorrect. The descending limb of the loop of Henle is impermeable to electrolytes and they become concentrated in the lumen. It is freely permeable to water. WikiVet Article: loop of Henle.

Reveal Feedback

11

Why is the oncotic pressure in the Bowman's space normally zero?

Please select an option Correct! Most proteins are too large to be filtered and therefore remain in the glomerular capillary. Large proteins are not filtered into Bowman's capsule unless a component of the filtration barrier (e.g. the glomerular basement membrane) is damaged. WikiVet Article: glomerular filtration. Incorrect. Most proteins are too large to be filtered and therefore remain in the glomerular capillary. Large proteins are not filtered into Bowman's capsule unless a component of the filtration barrier (e.g. the glomerular basement membrane) is damaged in which case the oncotic pressure would be higher than zero. Oncotic pressure in the Bowman's capsule is normally zero because filtered fluid is essentially protein free. WikiVet Article: glomerular filtration. Incorrect. Large amounts of protein are not capable of being reabsorbed from the nephron back into the blood. Most proteins are too large to be filtered and therefore remain in the glomerular capillary. Large proteins are not filtered into Bowman's capsule unless a component of the filtration barrier (e.g. the glomerular basement membrane) is damaged. Oncotic pressure in the Bowman's capsule is normally zero because filtered fluid is essentially protein free. WikiVet Article: glomerular filtration. Incorrect. Hydrostatic pressure does not directly affect oncotic pressure. Most proteins are too large to be filtered and therefore remain in the glomerular capillary. Large proteins are not filtered into Bowman's capsule unless a component of the filtration barrier (e.g. the glomerular basement membrane) is damaged. Oncotic pressure in the Bowman's capsule is normally zero because filtered fluid is essentially protein free. WikiVet Article: glomerular filtration. Incorrect. There is high hydrostatic pressure in the capillaries causing filtration into the Bowman's space because there is low hydrostatic pressure in the Bowman's space. Oncotic pressure in the Bowman's capsule is normally zero because filtered fluid is essentially protein free. WikiVet Article: glomerular filtration.

Reveal Feedback

12

In which segment(s) of the nephron is most of the filtered sodium, chloride and potassium ions reabsorbed?

Please select an option Incorrect. The descending limb of the loop of Henle is impermeable to electrolytes. Sodium, chloride and potassium ions are mainly reabsorbed in the proximal convoluted tubule. WikiVet Article: proximal convoluted tubule, loop of Henle. Incorrect. In the late distal tubule and collecting duct potassium is actively secreted and aldosterone acts to increase sodium absorption and potassium excretion. Sodium, chloride and potassium ions are mainly reabsorbed in the proximal convoluted tubule. WikiVet Article: proximal convoluted tubule, collecting duct. Incorrect. In the distal convoluted tubule chloride ions are transported with sodium ions (symport). Sodium, chloride and potassium ions are mainly reabsorbed in the proximal convoluted tubule. WikiVet Article: proximal convoluted tubule, distal convoluted tubule . Incorrect. In the ascending limb of the loop of Henle sodium, potassium and chloride ions are coupled and actively transported out of the lumen (symport). Sodium, chloride and potassium ions are passively reabsorbed in the proximal convoluted tubule. WikiVet Article: proximal convoluted tubule, loop of Henle. Correct! Sodium, chloride and potassium ions are principally reabsorbed in the proximal convoluted tubule- about 65% of the total reabsorption occures here. WikiVet Article: proximal convoluted tubule.

Reveal Feedback

13

On which section(s) of the nephron does aldosterone act to stimulate sodium reabsorption?

Please select an option Incorrect. All major hormonal controls of reabsorption are exerted on the late distal convoluted tubule and the collecting ducts. WikiVet Article: aldosterone. Incorrect. All major hormonal controls of reabsorption are exerted on the collecting ducts. WikiVet Article:Aldosterone. Incorrect. All major hormonal controls of reabsorption are exerted on the late distal convoluted tubule and the collecting ducts. WikiVet Article:Aldosterone. Correct! All major hormonal controls of reabsorption are exerted on these parts of the nephron. WikiVet Article:Aldosterone. Incorrect. All major hormonal controls of reabsorption are exerted on the late distal convoluted tubule and the collecting ducts. WikiVet Article:Aldosterone.

Reveal Feedback