Difference between revisions of "Equine Nervous System - Horse Anatomy"

From WikiVet English
Jump to navigation Jump to search
Line 139: Line 139:
 
===Meninges===
 
===Meninges===
 
The meninges are layers of tissue surrounding the central nervous system (CNS). Meningitis is the inflammation of these layers.  Gaps and spaces between the meninges are named.
 
The meninges are layers of tissue surrounding the central nervous system (CNS). Meningitis is the inflammation of these layers.  Gaps and spaces between the meninges are named.
===Dura mater===
+
====Dura mater====
 
The Dura mater is the outer most layer and is made up of a dense fibrous connective tissue. The space in the vertebral canal ouside the dura mater is the '''epidural space'''. In the cranium, the dura layer is fused with the periosteum and therefore is in effect single layer without an epidural space. The dura contains a number of folds throughout its coverage of the brain including the ''Faux cerebri'', a midline fold between cerebral hemispheres, the ''Tentorium cerebelli'', an  oblique fold between the cerebrum and cerebellum and the ''Diaphragma sellae'' which forms a collar around the neck of the pituitary and forms the roof of the hypophyseal fossa. This layer and these associated folds all provide structural support to the brain and prevent the brain from undergoing excess movement within the skull. Where the dura mater folds between brain tissues it splits into two distinct layers that are separated by large blood filled spaces called venous sinuses. Venous sinuses are directly connected to the venous system and venous blood from vessels supplying the brain return to the heart via these sinuses.  
 
The Dura mater is the outer most layer and is made up of a dense fibrous connective tissue. The space in the vertebral canal ouside the dura mater is the '''epidural space'''. In the cranium, the dura layer is fused with the periosteum and therefore is in effect single layer without an epidural space. The dura contains a number of folds throughout its coverage of the brain including the ''Faux cerebri'', a midline fold between cerebral hemispheres, the ''Tentorium cerebelli'', an  oblique fold between the cerebrum and cerebellum and the ''Diaphragma sellae'' which forms a collar around the neck of the pituitary and forms the roof of the hypophyseal fossa. This layer and these associated folds all provide structural support to the brain and prevent the brain from undergoing excess movement within the skull. Where the dura mater folds between brain tissues it splits into two distinct layers that are separated by large blood filled spaces called venous sinuses. Venous sinuses are directly connected to the venous system and venous blood from vessels supplying the brain return to the heart via these sinuses.  
===Subdural space===
+
====Subdural space====
 
The subdural space lies between the dura mater and the next meningial layer, the arachnoid mater. The subdural space is narrow potential space, where the two meningeal leayers lie in close proximity; but do not meet. The subdural space is thought to contain only lymph-like fluid. The meningeal layers can move apart in the event of injury or increased pressure; for example pooling of blood in the subdural space (subdural haematoma).
 
The subdural space lies between the dura mater and the next meningial layer, the arachnoid mater. The subdural space is narrow potential space, where the two meningeal leayers lie in close proximity; but do not meet. The subdural space is thought to contain only lymph-like fluid. The meningeal layers can move apart in the event of injury or increased pressure; for example pooling of blood in the subdural space (subdural haematoma).
===Arachnoid mater===
+
====Arachnoid mater====
 
This is the middle meningial layer and lies between the dura mater and the pia mater, the innermost meningeal layer. The arachnoid mater is a delicate structure and is constructed with non-vascular connective tissue. This layer also has small protrusions through the dura mater into the previously mentioned venous sinuses called '''Arachnoid villus''' and these allow [[Cerebral_Spinal_Fluid_-_Anatomy_&_Physiology|cerebrospinal fluid]] (CSF) to enter and exit the blood stream. These protrusions adhere to the inner surface of the skull via ''calvaria'' processes.
 
This is the middle meningial layer and lies between the dura mater and the pia mater, the innermost meningeal layer. The arachnoid mater is a delicate structure and is constructed with non-vascular connective tissue. This layer also has small protrusions through the dura mater into the previously mentioned venous sinuses called '''Arachnoid villus''' and these allow [[Cerebral_Spinal_Fluid_-_Anatomy_&_Physiology|cerebrospinal fluid]] (CSF) to enter and exit the blood stream. These protrusions adhere to the inner surface of the skull via ''calvaria'' processes.
===Subarachnoid Space===
+
====Subarachnoid Space====
 
The subarachnoid space lies between the arachnoid mater and pia mater. Both meninges are connected via a fine network of connective tissue filaments (spider web-like) which run through the space, originating from the arachnoid mater. This space also contains '''cerebrospinal fluid (CSF)''' from ventricular system. The largest parts of this space are called the ''cisterns'', which are used for the collection of CSF. For example there is a '''cerebellomedullary cistern''' around the foramen magnum.
 
The subarachnoid space lies between the arachnoid mater and pia mater. Both meninges are connected via a fine network of connective tissue filaments (spider web-like) which run through the space, originating from the arachnoid mater. This space also contains '''cerebrospinal fluid (CSF)''' from ventricular system. The largest parts of this space are called the ''cisterns'', which are used for the collection of CSF. For example there is a '''cerebellomedullary cistern''' around the foramen magnum.
===Pia Mater===
+
====Pia Mater====
This is the innermost layer and is firmly bound to the underlying neural tissue of the brain and spinal cord. The inner surface of the brain facing this meningial layer is lined with ependymal cells. The pia mater is highly vascular and is formed from connective tissue.
+
This is the innermost layer and is firmly bound to the underlying neural tissue of the brain and spinal cord. The inner surface of the brain facing this meningial layer is lined with ependymal cells. The pia mater is highly vascular and is formed from delicate connective tissue. It also contains arteries and veins, but not venous sinuses.
 
 
 
===Cerebrospinal Fluid===
 
===Cerebrospinal Fluid===
 
==Peripheral Nervous System==
 
==Peripheral Nervous System==

Revision as of 17:44, 21 November 2012



Central Nervous System

Brain

The brain is responsible for co-ordinating, integrating and controlling the rest of the nervous system. The brain is divided into several parts. Based on phylogenetic development, it can be divided into the forebrain, midbrain and hindbrain. Based on gross anatomy, it can be divided into the cerebrum, cerebellum and brainstem. The brain is enclosed within the cranial cavity of the skull.

Forebrain

The forebrain (proencephalon) is the largest part of the brain, most of which is cerebrum. Other important structures found in the forebrain include the thalamus , the hypothalamus and the limbic system. The cerebrum is divided into two cerebral hemispheres connected by a mass of white matter known as the corpus callosum. Each hemisphere is split into four lobes; the frontal, parietal, occipital and temporal lobes. The surface of each hemisphere is made up of grey matter known as the cerebral cortex and is folded to increase the surface area available within the skull. The cortex has roles within perception, memory and all higher thought processes. Inside the cortex is the white matter, within which are a number of nuclei (grey matter), known as the basal nuclei. The basal nuclei receive information from the cortex to regulate skeletal movement and other higher motor functions.

The thalamus functions to relay sensory information to the cerebral cortex and the hypothalamus, regulating visceral functions including temperature, reproductive functions, eating, sleeping and the display of emotion. The limbic system describes a collection of structures within the forebrain, including the amygdala and hippocampus, also known as the 'emotional brain'. It is important in the formation of memories and in making decisions and learning.

Thalamus

The thalamus has many functions:

  • Processing and relaying sensory information selectively to various parts of the cerebral cortex
  • Translating signals to the cerebral cortex from lower centres including auditory, somatic, visceral, gustatory and visual systems
  • Regulating states of sleep and wakefulness The thalamus plays a major role in regulating arousal, levels of consciousness and levels of activity.
Hypothalamus

The function of the hypothalamus is mainly related to the overall regulation of the Endocrine System. The hypothalamus is closely related to the pituitary gland, controlling a large proportion of the activity going to it. For a more detailed analysis of the function of this part of the brain, please use the link: Hypothalamus Anatomy and Physiology.

Pituitary

The function of the pituitary is mainly related to the production of hormones as part of the Endocrine System. For further information on the pituitary gland please use this link: Equine Pituitary Gland.

Cerebral Cortex

The outer layers of the cerebrum are made up of grey matter. Grey matter is formed by neurons and their unmyelinated fibres. The white matter below the grey matter of the cortex is formed predominantly by myelinated axons (myelin is white in appearance). The surface of the cerebral cortex is folded; more than two thirds of the surface is within the grooves or "sulci". The cerebral cortex is connected to structures such as the thalamus and the basal ganglia, sending information to them along efferent connections and receiving information from them via afferent connections. Most sensory information is routed to the cerebral cortex via the thalamus. The cortex is commonly described as comprising three parts; sensory, motor and association areas.

The sensory areas receive and process information from the senses. Inputs from the thalamus are called primary sensory areas. Vision, hearing, and touch are processed by the primary visual cortex, primary auditory cortex and primary somatosensory cortex respectively. The two hemispheres of the cerebral cortex receive information from the opposite (contralateral) side of the body. There are a number of anatomical areas of the brain responsible for organising this sensory information. The parietal lobe is located within the dorsocaudal aspect of the cortex. The temporal lobes are located laterally and the occipital lobes are located in the caudal most aspect of the cortex. The frontal lobe or prefrontal association complex is involved in planning actions and movement.

The motor cortex areas of the brain are located in both hemispheres of the cortex and are shaped like a pair of headphones stretching from ear to ear. The motor areas are related to controlling voluntary movements, especially fine movements. There are two main types of connection between the motor cortex and motor neurones found in the ventral horn of the spinal cord; the Pyramidal tracts and the Extrapyramidal tracts.

  • Pyramidal tract connections are direct with no synapses in the brain stem. Axons pass through the ventral aspect of the medulla oblongata. The pyramidal tracts are responsible for aspects of fine motor skills that require a degree of conscious thought and concentration.
  • The extrapyramidal tracts pass through the medulla oblongata outside the ventral pyramidal tracts and have synapses within the brain stem nuclei. These synapses make it possible for signals travelling down the extrapyramidal horns to be influenced by other areas of the brain including the cerebrum. The extrapyramidal tracts are generally responsible for activation of larger muscle groups and often work in a coordinated manner to achieve smooth synchronous movements.
Limbic System

The Limbic system is made up of parts of the brain bordering the corpus collosum. The Limbic system contains areas of cerebral cortex, the cingulate gyrus (dorsally), the parahippocampus gyrus (ventrally), the amygdala, parts of the hypothalamus (mamillary body) and the hippocampus. The limbic system is principally responsible for emotions and the various types of emotion can affect the activity of the Autonomic Nervous System, facilitated by the hypothalamus.

Olfactory Bulb

The olfactory bulb is responsible for olfaction and the bulb itself is located within the rostral forebrain area, supported by the cribiform plate and the ethmoid bone. The olfactory nerves are connected directly to the limbic system.As a result, olfaction plays a central role and is particularly important in regulating/stimulating sexual behaviour.

Midbrain

Hindbrain

Cranial Nerves

Cranial nerves arise from the brain and brain stem, rather than the spinal cord. Nerves arising from the spinal cord are the peripheral nerves. There are 12 pairs of cranial nerves and these pairs of nerves passage through foramina in the skull, either individually or in groups. Cranial nerves are traditionally referred to by Roman numerals and these numerals begin cranially and run caudally. The most cranial nerve is the Olfactory nerve (I) which runs from the nasal cavity through to the olfactory bulb. The next most cranial is the Optic nerve (II) which runs from the eyes to the thalamus. Cranial nerves III to XII all exit from the brain stem and innervate the head, neck and organs in the thorax and abdomen. In order of most cranial to caudal, these include the Oculomotor nerve (III), the Trochlear nerve (IV), the Trigeminal nerve (V), the Abducens nerve (VI), the Facial nerve (VII), the Vestibulocochlear nerve (VIII), the Glossopharyngeal nerve (IX), the Vagus nerve (X), the Accessory nerve (XI) and the Hypoglossal nerve (XII).

Many of the cranial nerves with nuclei within the brain stem contain sensory and motor neurone components. The sensory fibre components have their cell bodies located in ganglia outside the central nervous system and the motor fibre element have their cell bodies within the central nervous system. TheOlfactory nerve (I), Optic nerve (II) and Vestibulocochlear nerve (VIII) are sensory nerves. The , Oculomotor nerve (III), Trochlear nerve (IV),Abducens nerve (VI),Accessory nerve (XI) and Hypoglossal nerve (XII) are motor nerves. Finally, the Trigeminal nerve (V), Facial nerve (VII),Glossopharyngeal nerve (IX), and Vagus nerve (X) are mixed sensory and motor nerves.

Olfactory Nerve (I)

The olfactory nerve is involved in the conscious perception of smell. Primary afferent cell bodies are located within the olfactory epithelium of the nasal mucosa on ethmoturbiate bones,rather than in a ganglion like the other cranial nerves. Projections from these cell bodies are the olfactory nerve fibres. The olfactory nerve is a sensory nerve and is composed of many Special Visceral Afferent fibres. The fibres are formed into bundles that are referred to as 'Olfactory filaments'. The olfactory nerve passes through the Cribiform plate and is surrounded by meningeal sheets including the sub-arachnoid space. The olfactory nerve terminates at the olfactory bulb. The horse also has nerves which arise from the nasal septum that course into the olfactory bulb, along with the vomeronasal nerve arising from the vomeronasal organ. Secondary neurons within the olfactory bulb project through the olfactory tracts to synapse with third order neurons in the medial forebrain bundle, amygdala, septal nuclei and habenular nuclei.

In the horse, special consideration must be given to diseases of the guttural pouch when considering cranial nerve dysfunction. The Glossopharangeal (IX), Vagus (X)and Accessory (XII) nerves are located in the medial compartment of the guttural pouch. The Facial (VII) nerve runs along the lateral compartment. The Mandibular nerve (V2) has limited contact with the dorsal wall of the lateral compartment.. Guttural pouch mycosis commonly results in paresis of cranial nerves IX,V and XII as well as erosion of the internal carotid artery. Rarely, there is involvement of cranial nerves VII and VIII.

Optic Nerve (II)

The optic nerve represents the connection between the receptor cells of the retina and the forebrain. It is not a true nerve, but represents an extension of the brain. The optic nerve is sesory, and is composed of Special Somatic Afferent fibres.

The visual pathway' involves three consecutive neurons:

  • The first order neuron is the bipolar cells of the retina, which are known as rods and cones.
  • The second order neuron is the ganglion cells of the retina and axons within the optic nerve. The optic nerve passes through the optic chiasm, which is an area of the ventral brain where both optic nerves run in a medial direction and eventually decussate (cross). In the horse, approximately 85-88% of fibres decussate. The optic nerve then runs through the optic canal.
  • The third order neuron has its cell body in the lateral geniculate nucleus in the diencephalon. Its axon projects to the visual cortex, which is mostly the contralateral occipital cortex, in the optic radiation. The occipital lobe is where visual processing takes place at a conscious level.

The nerve is also involved in modulation of parasympathetic tone to the iris. The first and second order neuron pathways are the same as those responsible for vision, however after synapsing with the lateral geniculate nucleus axons involved in modulation of parasympathetic tone synapse with a third order neuron in the pretectal nucleus. Most axons from the pretectal nucleus then decussate back to synapse in the parasympathetic component of the Occulomotor nerve (III) in the ipsilateral eye (because it has crossed once at the optic chiasm and then again at the pretectal nucleus).

The optic nerve can be examined clinically via the menace response and pupillary light reflex (PLR). Anopsia (loss of vision) can be seen, especially associated with shear injury to the nerve after head trauma.

Oculomotor nerve (III)

The oculomotor nerve is part of the group of cranial nerves responsible for innervating the muscles of the head. The nerve originates from the ventral midbrain and is a motor nerve. It is composed of general somatic efferent fibres and general visceral efferent fibres. The general somatic efferent fibres of the oculomotor nerve are responsible for the motor function of four of the six external muscles of the eyeball; the 'dorsal rectus', 'medial rectus', 'ventral rectus', 'ventral oblique' and 'levator palpebri superioris' (levator of the upper eyelid). The general visceral efferent fibres of the oculomotor nerve are responsible for the control of pupil diameter and therefore control the 'spincter pupillae' muscle and the 'ciliaris' muscle. These fibres control pupillary constriction via the parasympathetic component of the nerve.

The oculomotor nerve has a pre-ganglionic nucleus in the midbrain and the nerve passes through the orbital fissure, along with the trochlear, abducens and opthalmic branch (V1) of the trigeminal nerve. It synapses in the ciliary ganglion of the eye.

During a clinical examination, horizontal eye movements (strabismus) or an absent pupillary light reflex (PLR) may indicate a problem.

Trochlear nerve (IV)

The trochlear nerve is part of the cranial nerve group responsible for innervation of the muscles of the head. The trochlear nerve originates from the dorsal midbrain and is a motor nerve. It is composed of general somatic efferent fibres and is the smallest of the cranial nerves.

After leaving the dorsal midbrain, its axons decussate (cross) and then run in a rostral direction through the cavernous sinus before exiting the skill via the orbital fissure. In the horse, it may also exit via a seperate trochlear foramen. Finally, it runs to innervate the 'dorsal oblique muscle' muscle of the contralateral eye.

During a clinical examination, a dorso-lateral strabismus may indicate a problem with this nerve.

Trigeminal nerve (V)

The trigeminal nerve is part of the cranial nerve group responsible for innervation of structures originating from branchial arches. The trigeminal nerve nuclei is in the area of the pons and medulla oblongata and is the nerve of the 1st branchial arch. The trigeminal nerve provides sensory innervation of cutaneous elements of the face, cornea, mucosa of the nasal septum and mucosa of the oral cavity. It also provides motor fibres to structures also associated with the 1st branchial arch, which are the muscles of mastication (temporalis, masseter, medial and lateral pterygoids and rostral digastricus. There are three primary branches of the trigeminal nerve; the Opthalmic nerve (V1), the Maxillary nerve (V2) and the Mandibular nerve (V3).

Opthalmic nerve (V1)

The opthalmic nerve is a sensory nerve composed of general somatic afferent fibres. It passes along the cavernous sinus and exits via the orbital fissue. As it enters the orbit of the eye, it splits further into the lacrimal nerve, the frontal nerve, the nasociliary nerve and the infratrochlear nerve.

  • The lacrimal nerve containes postganglionic parasympathetic fibres from the pterygopalatine ganglion that innervate the lacrimal gland. The lacrimal nerve also contains general somatic afferents that provide sensation to the lateral part of the upper eyelid.
  • In the horse, the frontal nerve exits the medial aspect of the orbit via the supraorbital foramen, becoming the supraorbital nerve, and innervates the upper eyelid and forehead.
  • The infratrochlear nerve innervates the medial aspects of the eyelids, third eyelid and frontal sinus.
  • Nasociliary nerves, which carry parasympathetic fibres from the oculomotor nerve to the iris, also provide sensory innervation to the globe.
Maxillary nerve (V2)

The maxillary nerve is a sensory nerve composed of general somatic afferent fibres. The maxillary nerve passes along the cavernous sinus and exits through the round foramen before entering the alar canal. It also runs across the wall of the pterygopalatine fossa and enters the infraorbital canal via the maxillary foramen. Whilst in the infraorbital canal, the maxillary nerve branch then branches further into the infraorbital nerve which supplies sensory fibres to the upper dental arcade. On exiting the infraorbital canal via the infraorbital foramen, the maxillary nerve branches again into the zygomatic nerve and pterygopalatine nerve supplying sensory fibres to the palate, lower eyelid, upper lip, nasal planum, and dorsal face.

Mandibular nerve (V3)

The mandibular nerve is a mixed sensory general somatic afferent fibres and motor general somatic efferent nerves. The mandibular nerve passes through the foramen lacerum in the horse. It provides motor branches to the masticatory muscles, the ventral throat and muscles of the palate. The mandibular nerve further branches into the masticatory nerve, masseteric nerve and the temporal nerve. The mandibular nerve provides sensory branches called the buccal nerve, auriculotemporal nerve, and then itself divides into two smaller branches; the lingual nerve and the inferior alveolar nerve. The auriculotemporal nerve carries sensory information from the middle ear, temporal area and portions of the guttural pouch. The lingual nerve receives sensory taste fibres and also connects some sensory taste fibres to parasympathetic salivary glands via the chorda tympani. Via the chorda tympani branch, the mandibular branch supplies sensory fibres related to taste to the rostral 2/3 of the tongue. The lingual branch of the glossopharyngeal nerve supplies sensory fibres to the caudal 1/3 of the tongue.

Abducent nerve (VI)

The abducent nerve is part of the cranial nerve group responsible for innervation of the muscles of the head. The abducent nerve originates from the medulla oblongata and is a motor nerve. It is composed of general somatic efferent fibres which are responsible for controlling the lateral rectus and retractor bulbi muscles of the eye. The nerve passes through the orbital fissure and can be found within the same layer of the meninges as the opthalmic branch (V1) of the trigeminal nerve (V).

During a clinical examination, medial strabismus may indicate a problem with this nerve.

Facial nerve (VII)

The facial nerve is part of the cranial nerve group responsible for the innervation of structures originating from the branchial arches. It originates from the medulla oblongata and from the second branchial arch. It has a common dura sheet with the opthalmic (V1) branch of the trigeminal nerve. The facial nerve is of a mixed composite, made up of a number of different fibre types. It has a general somatic efferent fibre within the ear canal, a general visceral efferent fibre acting under parasympathetic control to some salivary glands, lacrimal glands, nasal cavity and palate, a special visceral afferent fibre providing taste to the rostral 2/3 of the tongue and finally it has a general somatic efferent fibre supplying motor function to the muscles of facial expression and caudal digastricus.

The facial nerve enters the petrosal bone via the internal acoustic meatus along with the vestibulocochlear nerve. The facial nerve also runs inside the facial canal. There are a number of intermediate branches which separate from the main facial nerve inside the facial canal including the greater petrosal nerve, stapedial nerve (motor) and the chorda tympani. These then emerge via the stylomastoid foramen at the caudoventral aspect of the skull. The chorda tympani of the facial nerve represents the special visceral afferent fibre supplying taste to the rostral 2/3 of the tongue.

There are also numerous external branches of the facial nerve once the facial nerve has left the facial canal. These include the internal auricular nerve, the auriculopalpebral nerve, the rostral auricular nerve, the palpebral nerve, the dorsal buccolabial nerve, the ventral buccolabial nerve, the ramus colli, the digastric nerve, the stylohoid nerve and the caudal auricular nerve.

The facial nerve supplies motor innervation to the muscles of facial expression. These are superficial flat, thin muscles that originate from bony areas of fascia and then radiate out around the skin. They may also often from sphincters such as around the mouth and eye.

During a clinical examination any facial paralysis, drooling or abscence of blinking may indicate a problem with the facial nerve.

Vestibulocochlear nerve (VIII)

The vestibulocochlear nerve is part of the special senses group of cranial nerves and is made up of two components; the vestibular nerve and the cochlear nerve. The vestibular nerve is responsible for balance whilst the cochlear nerve is responsible for hearing. The nerves send impulses from the inner ear which contains the vestibular apparatus and cochlea. The vestibulocochlear nerve is a sensory nerve made up of special somatic afferent fibres. It passes through the internal acoustic meatus and into the petrosal bone. The facial nerve also takes this route.

Clinical problems with the vestibulocochlear nerve would be indicated on examination by changes in hearing and/or strabismus and nystagmus. A head tilt is also associated with this nerve.

Glossopharyngeal nerve (IX)

The glossopharyngeal nerve is part of the group of cranial nerves responsible for innervation of structures derived from the branchial arches. This nerve innervates structures related to the third branchial arch. It is also part of a group, together with the vagus and accessory nerves, that passes through the jugular foramen which is termed the vagus group. The glossopharyngeal nerve has cell bodies that are referred to as nucleus ambiguus. The glossopharyngeal nerve originates from the medulla oblongata and has several branches including the pharyngeal nerve, the lingual nerve and the tympanic branches.

The glossopharyngeal nerve is composed of many fibre types including general somatic efferent fibres that innervate the stylopharyngeus muscle; the general visceral afferent fibres that provide sensory information from the carotid body, the pharynx and the middle ear; the general visceral efferent fibres that provide parasympathetic innervation to the parotid and zygomatic salivary glands; the special visceral afferent fibres that provide taste caudal to the tongue and finally the general somatic afferent fibres that provide sensory information from the external ear. The lingual branch of the glossopharyngeal nerve provides general somatic afferent fibres and special visceral afferent fibres to the caudal 1/3 of the tongue.

On clinical examination, choking or dysphagia as a result of malfunctioning or absent pharyngeal reflexes would indicate a problem with the glossopharyngeal nerve.

Vagus nerve (X)

The vagus nerve is part of the group of cranial nerves responsible for innervation of structures derived from the branchial arches. It is also part of a group, together with the glossopharyngeal and accessory nerves, that passes through the jugular foramen which is termed the vagus group. The vagus nerve innervates structures related to the fourth branchial arch. The vagus nerve has cell bodies that are referred to as nucleus ambiguus.

The vagus nerve is composed of many different types of nerve fibre including general somatic efferent fibres supplying motor function to the muscles of the larynx, pharynx, palate and oesophagus; general visceral afferent fibres to the base of the tongue, pharynx and larynx; general visceral efferent fibres for parasympathetic supply of the thoracic and abdominal viscera; special visceral afferent fibres supplying taste to regions of the epiglottis and palate and finally general somatic afferent fibres to the external ear and the dura mater. The vagus nerve also supplies general somatic afferent fibres and special visceral afferent fibres to the root of the tongue.

There are many functional components of the vagus nerve including the heart, larynx, pharynx and many other viscera. On clinical examination any changes related to gag reflexes, blood pressure or heart rate, changes in 'voice' (dysphonia) or inspiratory dyspnoea may indicate a problem with the vagus nerve.

Accessory nerve (XI)

The accessory nerve is part of the group of cranial nerves responsible for innervation of structures derived from the branchial arches. It is also part of a group, together with the glossopharyngeal and vagus, nerves that passes through the jugular foramen which is termed the vagus group. The accessory nerve supplies structures related to the fourth branchial arch. The accessory nerve has cell bodies that are referred to as nucleus ambiguus and originate in the medulla oblongata. The cranial root of the accessory nerve actually contributes to the vagus nerve and to the striated muscles of the pharynx, larynx, palate and oesophagus.

However, the accessory nerve also contributes to the cervical spinal cord and spinal root through the foramen magnum; providing innervation to muscles of the neck. The spinal root of the accessory nerve branches into the dorsal branch and the ventral branch. The dorsal branch innervates the brachiocephalicus, trapezius and omotransversarius muscles of the dorsal neck. The ventral branch innervates the sternocephalicus muscle.

During clinical examination any difficulties in turning the neck or muscle atrophy around the dorsal and ventral neck may indicate a problem with the accessory nerve.

Hypoglossal nerve (XII)

The hypoglossal nerve is part of the group of cranial nerves responsible for the control of muscles of the head. It is in part a cervical nerve due to its caudal position on the brain stem. The nerve is composed of general somatic efferent fibres which control the intrinsic and extrinsic muscles of the tongue (together with other nerves including the lingual nerve, facial nerve, lingual branch of the glossopharyngeal nerve and the vagus nerve). The nucleus of the nerve is located within the medulla oblongata of the brain stem and it passes through the hypoglossal canal.

During a clinical examination any deviation of the tongue may indicate a problem with this nerve. Deviation of the tongue is always to the side of the lesion initially.

Spinal Cord

Meninges

The meninges are layers of tissue surrounding the central nervous system (CNS). Meningitis is the inflammation of these layers. Gaps and spaces between the meninges are named.

Dura mater

The Dura mater is the outer most layer and is made up of a dense fibrous connective tissue. The space in the vertebral canal ouside the dura mater is the epidural space. In the cranium, the dura layer is fused with the periosteum and therefore is in effect single layer without an epidural space. The dura contains a number of folds throughout its coverage of the brain including the Faux cerebri, a midline fold between cerebral hemispheres, the Tentorium cerebelli, an oblique fold between the cerebrum and cerebellum and the Diaphragma sellae which forms a collar around the neck of the pituitary and forms the roof of the hypophyseal fossa. This layer and these associated folds all provide structural support to the brain and prevent the brain from undergoing excess movement within the skull. Where the dura mater folds between brain tissues it splits into two distinct layers that are separated by large blood filled spaces called venous sinuses. Venous sinuses are directly connected to the venous system and venous blood from vessels supplying the brain return to the heart via these sinuses.

Subdural space

The subdural space lies between the dura mater and the next meningial layer, the arachnoid mater. The subdural space is narrow potential space, where the two meningeal leayers lie in close proximity; but do not meet. The subdural space is thought to contain only lymph-like fluid. The meningeal layers can move apart in the event of injury or increased pressure; for example pooling of blood in the subdural space (subdural haematoma).

Arachnoid mater

This is the middle meningial layer and lies between the dura mater and the pia mater, the innermost meningeal layer. The arachnoid mater is a delicate structure and is constructed with non-vascular connective tissue. This layer also has small protrusions through the dura mater into the previously mentioned venous sinuses called Arachnoid villus and these allow cerebrospinal fluid (CSF) to enter and exit the blood stream. These protrusions adhere to the inner surface of the skull via calvaria processes.

Subarachnoid Space

The subarachnoid space lies between the arachnoid mater and pia mater. Both meninges are connected via a fine network of connective tissue filaments (spider web-like) which run through the space, originating from the arachnoid mater. This space also contains cerebrospinal fluid (CSF) from ventricular system. The largest parts of this space are called the cisterns, which are used for the collection of CSF. For example there is a cerebellomedullary cistern around the foramen magnum.

Pia Mater

This is the innermost layer and is firmly bound to the underlying neural tissue of the brain and spinal cord. The inner surface of the brain facing this meningial layer is lined with ependymal cells. The pia mater is highly vascular and is formed from delicate connective tissue. It also contains arteries and veins, but not venous sinuses.

Cerebrospinal Fluid

Peripheral Nervous System