7,838 bytes added ,  17:02, 4 June 2016
Line 1: Line 1: −
{{toplink
+
[[Image:Syringe.jpg|right|thumb|200px|<p>'''Syringe'''</p>Source: Wikimedia Commons; Author: ZaldyImg (2008)]]
|backcolour = FFE4E1
+
==Introduction==
|linkpage =WikiBlood
+
Why do we vaccinate animals?  
|linktext =WIKIBLOOD
  −
|thispagemap= Vaccines(Concept Map) - WikiBlood
  −
|sublink1 =Immunology - WikiBlood
  −
|subtext1 =IMMUNOLOGY
  −
|pagetype =Blood
  −
}}
  −
 
  −
==Why Vaccinate?==
  −
 
   
*To protect against infectious diseases
 
*To protect against infectious diseases
 +
*Where there is no effective treatment once infected e.g. FeLV, FIV
 +
*Where disease is life-threatening e.g. Canine Parvovirus
 +
*To prevent the spread of disease by virus excretion e.g. Rabies, FMDV
   −
*Where there is no effective treatment once infected
+
The goal is to vaccinate 90% of the population to reduce the amount of '''endemic''' virus until no new infections occur. Once the disease risk is low, vaccination can be replaced by an eradication or quarantine programme.
**E.g. FeLV, FIV
     −
*Where disease is life-threatening
+
==How do vaccines work?==
**E.g. Canine Parvovirus
+
Vaccination induces an immunological memory of the infectious organism. High levels of [[T cell differentiation#Cytotoxic T-Cells|cytotoxic T cells]] and neutralising [[Immunoglobulins - Overview|antibody]] are activated 24 - 48 hours post vaccination as a [[B cell differentiation#Secondary T Cell Dependent Response|secondary response]] (instead of 4-10 days later as a [[B cell differentiation#T-Cell Dependent Response|primary response]]). Neutralising [[Immunoglobulins|antibody]] then blocks the attachment of the infectious organism to host cell receptors.
   −
*To prevent the spread of disease
+
'''Endogenous vaccines''' cause antigens to be made as new proteins by the cell, bacterium or virus and involves [[Major Histocompatability Complexes#MHC I|MHC class I]] processing live virus, recombinant virus or DNA vaccines.
**E.g. Rabies, FMDV
     −
==How do we vaccinate?==
+
'''Exogenous vaccines''' are when the antigen is processed from the outside by endocytosis without any new proteins being made by the host cell. This involves [[Major Histocompatability Complexes#MHC II|MHC class II]] processing inactivated and subunit vaccines.
   −
*Usually by subcutaneous injection for '''systemic''' protection ([[Immunoglobulin G - WikiBlood|IgG]])
+
==Route of Administration==
 +
*Usually by subcutaneous injection for '''systemic''' protection. Some vaccines such as the [[Vaccinations_for_Rabbits#Myxomatosis_Vaccination|myxomatosis]] vaccine NobivacTM Myxo (Intervet UK Ltd) require an intradermal injection as part of the administration procedure.
 +
*For a localised '''mucosal''' immune response, intranasal administration is required ([[Immunoglobulin A|IgA]]) e.g. kennel cough vaccine.
   −
*For '''mucosal''' immune response, intranasal administration is best ([[Immunoglobulin A - WikiBlood|IgA]])
+
==Vaccination Options==
 
+
[[Image:Passive Immunisation.jpg|thumb|right|200px|Passive Immunisation - Copyright nabrown RVC]]
==What do we vaccinate with?==
  −
[[Image:Passive Immunisation.jpg|thumb|right|150px|Passive Immunisation - Copyright nabrown RVC]]
   
===Passive immunisation===
 
===Passive immunisation===
   Line 36: Line 28:     
'''Disadvantages:'''
 
'''Disadvantages:'''
*Short duration of action
+
*Short duration of action; temporary protection is obtained by the administration of preformed [[Immunoglobulins - Overview|antibody]] from another individual of the same or of a different species. The acquired antibodies are used in combination with [[Adaptive Immune System - Overview#Antigen Recognition|antigen]], and catabolised by the body, meaning protection is gradually lost over time
**Temporary protection by the administration of preformed antibody from another individual of the same or of a different species
+
*Injection of antiserum may cause an [[Adverse Drug Reactions|allergic response]]
**The aquired antibodies are used in combination with antigen and catabolised by the body meaning protection is gradually lost
+
*Antiserum contains many antibodies, not just the specific [[Immunoglobulins|antibodies]] needed
*Injection of antiserum may cause an allergic response
  −
*Antiserum contains many antibodies not just the specific antobodies needed
      
'''Types of antibodies administered:'''
 
'''Types of antibodies administered:'''
*Maternally-derived antibodies in colostrum
+
*Maternally-derived antibodies in [[Materno-Fetal Immunity - Introduction#Passive transfer via colostrum|colostrum]] when there is a [[Failure of Passive Transfer|failure of passive transfer]] of [[Immunoglobulin G]]
*Antiserum (artificial)
+
*Antiserum  
**The antigen (and often an adjuvant) is injected into the host animal
+
**The antibodies are used in combination with [[Adaptive Immune System - Overview#Antigen Recognition|antigen]] (and often an adjuvant) which is injected into a host animal
**The immune system of that animal synthesised antibodies
+
**The immune system of that animal synthesises antibodies
**Repeated injections at intervals increases the total antibody production
+
**Repeated injections at intervals increases total [[Immunoglobulins - Overview|antibody]]  production
 
**The immunised animal is bled and the serum collected which contains the newly made antibodies. The serum is called '''antiserum'''.
 
**The immunised animal is bled and the serum collected which contains the newly made antibodies. The serum is called '''antiserum'''.
 
**The serum can then be injected into a different animal to confer passive immunisation
 
**The serum can then be injected into a different animal to confer passive immunisation
   −
*Example of when passive immunisation is used:
  −
**Suspect tetanus
     −
'''Passive Immunotherapy with Antibody'''
+
Examples of passive immunisation:
 
{| style="width:60%; height:200px" border="1" align=left
 
{| style="width:60%; height:200px" border="1" align=left
 
!INFECTION
 
!INFECTION
Line 79: Line 67:  
| Used
 
| Used
 
| Not used
 
| Not used
| Post-exposure to vaccine
+
| Post-exposure to virus
 
|}
 
|}
 
<Br clear="left">
 
<Br clear="left">
 
<br>
 
<br>
[[Image:Active Immunisation.jpg|thumb|right|150px|Active Immunisation - Copyright nabrown RVC]]
+
[[Image:Active Immunisation.jpg|thumb|right|200px|Active Immunisation - Copyright nabrown RVC]]
 +
 
 
===Active immunisation===
 
===Active immunisation===
*Administer antigen so the patient develops its own antibodies to protect against disease
+
Active immunisation requires the administration of antigen so the patient develops their own antibodies to protect against disease. Suitable antigens include:
**Living organisms
+
*Living organisms
**Dead organisms
+
*Dead organisms
**Toxoids
+
*Toxoids
**Subunit antigens
+
*Subunit antigens
**DNA
+
*DNA
    
'''Advantages'''
 
'''Advantages'''
*Long duration of action  
+
*Long duration of action; once antibody is produced against the antigen, [[B cell differentiation#Memory cells|memory cells]] are formed which continue circulating in the body
**Once antibody is produced against the antigen, memory cells are formed which continue circulating in the body
  −
**For further information on memory cells click [[B cell differentiation - WikiBlood|here]]
      
'''Disadvantages'''
 
'''Disadvantages'''
*Delay in protection
+
*The host's immune system needs to evoke an immune response against the antigen which can take a few days
**The host's immune system needs to evoke an immune response against the antigen which can take a few days
+
*Can require two or more doses to be effective; the first dose initiates the '''priming''' reaction where antibody production ceases after a few weeks, but the second and subsequent doses create memory cells which remain in the circulation for a much longer period of time.
**For further information on the antibody response click [[Adaptive Immune System - WikiBlood|here]]
     −
*Often needs two or more doses
+
==Vaccine Antigens==
**The first dose initiates the '''priming''' reaction where antibody production ceases after a few weeks, but the second and subsequent doses creates memory cells which remain in the circulation for a much longer period of time
+
Potential antigenic substances include:
**For further information on the T cell independent and dependent responses click [[B cell differentiation - WikiBlood#T-Cell Dependent and Independent Responses|here]]
+
===Whole Organism===
 +
'''Live Attenuated (LA) vaccines''' include the organism but in an altered form - virulent organisms cannot be used as vaccines as they have the potential to cause disease. Virulence is reduced by growing the organism in altered conditions (e.g. in cells or eggs), so that it is less able to replicate when introduced into the host, and is therefore less likely to cause disease. Virulence can also be reduced by genetic engineering, or by using naturally occurring avirulent strains.
   −
==What antigen(s) do we use in the vaccine?==
     −
===Whole Organism===
+
LA vaccines produce a superior response to disease than using killed organisms as the dose of antigen is larger and more sustained, and the response takes place at the site of natural infection, producing a greater local response than with killed organism vaccines. Examples include:
 +
*The current vaccine for tuberculosis (called BCG) contains an attenuated form of a mycobacteria
 +
*Vaccines for leishmaniasis
 +
*Vaccines for parainfluenza virus 3 of calves is developed to be temperature-sensitive so that it grows at 34 C in the upper respiratory tract but not at 38 C in the lungs
   −
*Live attenuated organism
+
'''Killed inactivated organism or toxin (toxoid)''' are useful where virulent and toxic organisms cannot be used as vaccines as they would cause disease. Organisms can be killed using radiation or chemicals so that they still possess the antigens to stimulate an immune response, but the organisms are unable to replicate inside the host. Alternatively, toxins are inactivated to produce a toxoid which will still have the antigens needed to produce an immune response but will not be harmful to the host. Two doses are required to [[B_cell_differentiation#Primary_T_Cell_Dependent_Response|'''prime''']] the immune system initially, and then induce an immunoligical [[B_cell_differentiation#Secondary_T_Cell_Dependent_Response|'''memory''']] of the disease causing organism.
**Virulent organisms cannot be used as vaccines as they would cause disease
  −
**Virulence is reduced by growing the organism in altered conditions so that it is less able to replicate when introduced to the host and therefore less likely to cause disease
  −
**Produces a superior response to disease than using killed organisms as the dose of antigen is larger and more sustained
  −
**Response takes place at site of natural infection producing a greater local response than with killed organism vaccines
  −
**E.g. The current vaccine for Tuberculosis (called BCG) contains an attenuated form of a mycobacteria
  −
**E.g. Vaccines for Leishmaniasis
     −
*Killed inactivated organism or toxin (toxoid)
+
1:4000 formaldehyde is used in the preparation of killed vaccines; inactivants containing azuridines and beta propiolactone are being developed which do not leave a persistent infectious viral fraction (like formaldehyde).
**Virulent and toxic organisms cannot be used as vaccines as they would cause disease
  −
**Organisms can be killed using radiation or chemicals so that they still possess the antigens to stimulate an immune response, but the organisms are unable to replicate inside the host
  −
**Toxins are inactivated to produce a toxoid which will still have the antigens needed to produce an immune response but will not be harmful to the host
  −
**Needs two doses (for an explanation on the T cell responses click [[B cell differentiation - WikiBlood#T-Cell Dependent and Independent Responses|here]])
     −
===Subunit Vaccine (part of the organism)===
+
===Subunits (part of the organism)===
 +
These can be purified proteins such as a single envelope protein separated from a purified virus by detergent and then centrifuged (traditional method) - genetic engineering can now make single protein vaccines quickly and accurately.
   −
*Purified protein
+
Recombinant or synthetic proteins can also be used as a subunit - the gene for the antigen required is inserted into a virus vector or cloned into bacteria allowing endogenous expression of the antigen. Small antigens, such as peptides, can be produced synthetically where necessary e.g. with Influenza viruses that are constantly mutating, and Canary pox vaccines encoding rabies or FeLV spike proteins (canary pox is safe as it undergoes incomplete replication in mammalian skin cells).
**From lysed organisms
     −
*Recombinant or synthetic protein
+
Subunit antigens can also be isolated using the DNA coding for antigenic proteins; circular DNA plasmids are expanded in disabled E.coli strains and then purified - the plasmids expressing the foreign gene can be vaccinated directly into the host.
**The gene for the antigen required is inserted into a virus vector or cloned into bacteria
  −
**Small antigens, such as peptides can be synthetically produced
  −
**E.g. being developed constantly to fight the Inflenza viruses
     −
*DNA coding for proteins (antigens)
+
==Adjuvants==
**Can be vaccinated directly into the host
+
Adjuvants are used with vaccines containing inactivated organisms which alone would only stimulate a weak immune response. Some adjuvants create a depot of antigen at the injection site allowing a steady flow of antigen into the afferent lymph, while others stimulate the immune system to amplify the adaptive immune response to antigens e.g. pathogen-associated molecular patterns (PAMPs). PAMP-like adjuvants assist naive [[T cells|T cell]] priming.
   −
===Adjuvants===
+
Different subtypes of [[T cell differentiation|T helper cells]] are stimulated by different adjuvants, for example:
 +
*Aluminium salts generate bias [[T cell differentiation#TH2 Cells|T helper II]] responses for antibody-mediated immunity
 +
*Killed mycobacteria generate IL-12 producing good '''cell'''-mediated immunity
   −
*Used with vaccines containing inactivated organisms which alone only stimulate a weak immune response
+
Adjuvants decrease the number of injections needed and the amount of antigen that needs to be administered, but they have been associated with vaccine reactions.
   −
*Some create a depot of antigen at the injection site allowing a steady flow of antigen into the afferent lymph
+
==Marker Vaccines==
 +
Marker vaccines distinguish infected from vaccinated animals in disease control programmes.
 +
They contain a deleted protein or gene; vaccinated animals cannot make antibody to the missing protein whereas infected animals can and this helps immunosurveillance for animals infected by an organism in countries that vaccinate against that disease.
   −
*Some stimulate the immune system to amplify the adaptive immune response to antigens
+
==Tailoring Vaccines for Specific Diseases==
**E.g. Pathogen-associated molecular patterns (PAMPs)
+
*The life-cycle of infectious organisms needs to be understood to ascertain the best type of immune response for fighting that particular infection
**E.g. PAMP-like adjuvants which assist naive T cell priming
+
*A vaccine can be created to provide the specific immunity best suited for fighting the associated infection
   −
*Different subtypes of T helper cells are stimulated by different adjuvants
+
===Immunity to Viral Infection===
**E.g. Aluminium salts generate bias T helper II responses for '''antibody'''-mediated immunity
+
[[Image:Virus Life Cycle.jpg|thumb|right|200px|Virus Life Cycle - Copyright Dr Brian Catchpole BVetMed PhD MRCVS]]
**E.g. Killed mycobacteria generate IL-12 producing good '''cell'''-mediated immunity
+
The virus life cycle consists of an extracellular phase, a replicative intracellular phase and another extracellular phase spreading viral particles to other cells to begin the life cycle again
   −
*Adjuvants decrease the number of injection needed and the amount of antigen administered
+
Immunity for the extracellular phase requires neutralising [[Immunoglobulins - Overview|'''antibody''']]:
 +
*[[B cells]] needed
 +
*[[T cell differentiation#TH2 Cells|T helper type II cells]] needed (for the [[Major Histocompatability Complexes#MHC II|MHC class II pathway]])
 +
*Live, killed and subunit vaccines can be used
   −
==Which type of vaccine is used for each disease?==
+
Immunity for the intracellular phase requires [[T_cells#Cytotoxic_CD8.2B|CD8+ cytotoxic T lymphocytes (CTL)]] and uses the [[Major Histocompatability Complexes#MHC I|MHC class I pathway]].
 +
*Only live vaccine can be used to get into cells (entering via the endogenous pathway)
   −
*The life-cycle of the organisms needs to be understood to ascertain the best type of immune response for fighting the particular infection
+
===Immunity to Bacterial Infection===
   −
*A vaccine can be created to provide specific immunity which is best suited for fighting the specific infection
+
*Extracellular bacterial infection needs antibody production for [[Complement#Opsonisation|opsonisation]] and to activate the [[Complement|complement pathways]]
 +
*[[B cells]] are needed
 +
*[[T cell differentiation#TH2 Cells|T helper type II cells]] are needed
   −
===Immunity to Virus Infection===
+
Vesicular infections can only be cured by organisms being destroyed inside [[Macrophages|'''macrophages''']]
 +
*[[T cell differentiation#TH1 Cells|T helper type I cells]] are needed
   −
*The virus life cycle consists of an extracellular phase, a replicative intracellular phase and another extracellular phase spreading viral particles to other cells to begin the life cycle again
+
==When do we vaccinate?==
 +
[[Image:Colostrum Intake.jpg|right|thumb|200px|Colostrum Intake - Copyright Prof Dirk Werling DrMedVet PhD MRCVS]]
 +
[[Image:Vaccinating puppies with Parvo.jpg|right|thumb|200px|Response to vaccination against canine parvovirus depending on antibody titre of puppies - Copyright Prof Dirk Werling DrMedVet PhD MRCVS]]
 +
*Breeding females can be vaccinated so that immunity is passively transferred to their offspring via the [[Materno-Fetal Immunity - Introduction#Passive transfer via colostrum|colostrum]] - this protects neonates for the first 8-12 weeks of life.
   −
*Immunity for the extracellular phase requires neutralising '''antibody'''
+
*Vaccination of young animals should be when the natural passive immunity decreases below the threshold for providing protection. Active immunity should then be stimulated so that the animal has sustained protection. If vaccination is given too early, the natural immunity can interfere with immunisation by binding and neutralising the vaccine antigens.
**B cells needed
  −
**T helper type II cells needed (for the MHC class II pathway)
  −
**Live vaccine can be used
  −
**Killed vaccine can be used
  −
**Subunit vaccine can be used
     −
*Immunity for the intracellular phase requires '''CD8+ cytotoxic T cells'''
+
*Two vaccines are usually given to allow for differences between individual animals in the time taken for any natural immunity to decrease.
**MHC class I pathway
  −
**Only live vaccine can be used to get into cells (entering via the endogenous pathway)
     −
===Immunity to Bacterial Infection===
+
===Dog Vaccinations===
 +
Diseases routinely covered by vaccination include:
 +
 
 +
*[[Canine Parvovirus]]
   −
*Extracellular bacterial infection need '''antibody''' production for opsonisation and to activate the complement pathways
+
*[[Canine Distemper Virus|Canine Distemper]]
**B cells needed
  −
**T helper type II cells needed
     −
*Vesicular infections can only be cured by organisms being destroyed inside '''macrophages'''
+
*[[Infectious Canine Hepatitis]]
**T helper type I cells needed
     −
==When do we vaccinate?==
+
*[[Leptospirosis - Cats and Dogs|Leptospirosis]]
   −
*Usually when animals are young
+
*[[Canine Parainfluenza - 2|Canine Parainfluenza virus]]
   −
*Breeding females so immunity is passed to offspring via the colostrum
+
*[[Canine Infectious Tracheobronchitis|Kennel Cough]]
**Protects neonates for the first 8-12 weeks of life
     −
*Vaccination of young animals should be when the natural passive immunity decreases below the threshold for providing protection. Active immunity should then be stimulated so that the animal has constant protection. The vaccination should not be given too early, as the natural immunity can interfere with immunisation by binding and neutralising the vaccine antigens.
+
*[[Rabies]]
   −
*2 vaccines are usually given to allow for differences between neonates as the point where natural immunity decreases and active immunity needs to be stimulated, will differ between littermates and between different animals
+
'''When to Vaccinate'''
   −
===Dog Vaccinations===
+
Puppies are usually first vaccinated between 6 to 8 weeks of age; a second vaccination is given 3-4 weeks later. Younger puppies (less than 16 weeks old) may require the third booster 3-4 weeks later, making the vaccination schedule to end between 14 to 16 weeks old. Adult dogs need booster vaccination regularly (depending on the specific vaccination and the recommendations of the vaccine manufacturer).
    +
===Cat Vaccinations===
 +
[[Image:Sebby cat.jpg|thumb|right|175px|Cat - Copyright nabrown RVC]]
 
'''Diseases covered by Vaccination'''
 
'''Diseases covered by Vaccination'''
   −
*Canine [[Parvoviridae|Parvovirus]]
+
*Feline Infectious Enteritis ([[Feline Panleucopenia]])
   −
*Canine Distemper
+
*'Cat Flu', including Feline [[Feline Herpesvirus 1|Herpesvirus]] and [[Feline Calicivirus]]
   −
*Canine Infectious Hepatitis
+
*[[Feline Leukaemia Virus]] (FeLV)
   −
*Leptospirosis
+
*[[Feline Immunodeficiency Virus]]
   −
*Canine Parainfluenza virus
+
* [[Chlamydiosis, Feline|Feline chlamydiosis]] (Chlamydophila felis)
 
  −
*Kennel Cough
  −
 
  −
*Rabies
      
'''When to Vaccinate'''
 
'''When to Vaccinate'''
 +
Kittens are usually vaccinated around 9 weeks old and a second vaccination is given 3 weeks later. Adult cats need booster vaccination regularly (depending on the specific vaccination and the vaccine manufacturers recommendations).
   −
*Puppies are usually first vaccinated between 6 to 8 weeks of age
+
===Rabbit Vaccinations===
**A second vaccination is needed 2 weeks later
+
[[Image:Buzz bunny.jpg|thumb|right|200px|Rabbit - Copywright L. Drew RVC]]
 
  −
*Adult dogs need booster vaccination regularly (depending on the specific vaccination)
  −
 
  −
===Cat Vaccinations===
  −
 
   
'''Diseases covered by Vaccination'''
 
'''Diseases covered by Vaccination'''
   −
*Feline Infectious Enteritis
+
*[[Vaccinations_for_Rabbits#VHD_Vaccination|Viral Haemorrhagic Disease]]
   −
*Feline Infectious Respiratory Disease 'Cat Flu'
+
*[[Vaccinations_for_Rabbits#Myxomatosis_Vaccination|Myxomatosis]]
**Feline [[Herpesviridae|Herpesvirus]]
  −
**Feline [[Caliciviridae|Calicivirus]]
     −
*Feline Leukaemia virus
+
'''When to Vaccinate'''
 +
Rabbits can be vaccinated against [[Myxomatosis|myxomatosis]] from 6 weeks of age and VHD from 2½ to 3 months of age. Booster vaccinations are given every 12 months. In areas at high risk of myxomatosis, it is recommended to give myxomatosis boosters at six-monthly intervals. Some myxomatosis vaccines need to given [[Vaccinations_for_Rabbits#Myxomatosis_Vaccination|partially intradermally]].
   −
*Feline Infectious Viraemia virus
+
==Vaccine Failure==
 +
Failures do occur and should be reported on the VMD [http://www.vmd.gov.uk/ 'yellow form' MLA252A] if the events occur in the United Kingdom. Vaccine failures in other European Union (EU) Member States, Norway, Iceland and Liechtenstein should be reported to the relevant competent authority where the event occurred using the [http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/document_listing/document_listing_000176.jsp&mid=WC0b01ac058002ddcb/ EU reporting forms for veterinarians] which are available in each EU language on the [http://www.ema.europa.eu/ European Medicines Agency] website. Circumstances leading to vaccine failures include:
 +
*Recipient is already infected with the virus or is immunosuppressed and unable to mount an immune response.
   −
*Feline Chlamydophilosis
+
*Break down of the '''cold-chain''' during transport (incorrect storage of vaccines requiring refrigeration)
   −
'''When to Vaccinate'''
+
*Improper administration (e.g.myxomatosis vaccine)
   −
*Kittens are usually vaccinated around 9 weeks old
+
*Accidental mixing of inactivated and live vaccines in the same syringe
**A second vaccination is needed 3 weeks later
     −
*Adult cats need booster vaccination regularly (depending on the specific vaccination)
+
*Recipient has maternal antibody to the vaccine
   −
===Rabbit Vaccinations===
+
*Immunity waning due to missed booster vaccination
   −
'''Diseases covered by Vaccination'''
+
*Vaccine is damaged during manufacture
   −
*Viral Haemorrhagic Disease
+
{{Learning
 +
|flashcards = [[Vaccination Flashcards|Vaccination Flashcards]]
 +
|full text =[http://www.cabi.org/cabdirect/FullTextPDF/2009/20093258316.pdf '''Factors influencing vaccine efficacy - a general review.''' Rashid, A.; Rasheed, K.; Akhtar, M.; Pakistan Agricultural Scientists Forum, Lahore, Pakistan, JAPS, Journal of Animal and Plant Sciences, 2009, 19, 1, pp 22-25, 18 ref.]
   −
*[[Poxviruses#Leporipoxviruses|Myxomatosis]]
+
[http://www.cabi.org/cabdirect/FullTextPDF/2009/20093115229.pdf ''' Establishing vaccine protocols - focus on client communication.''' Datz, C.; The North American Veterinary Conference, Gainesville, USA, Small animal and exotics. Proceedings of the North American Veterinary Conference, Orlando, Florida, USA, 17-21 January, 2009, 2009, pp 608-611]
   −
'''When to Vaccinate'''
+
[http://www.cabi.org/cabdirect/FullTextPDF/2009/20093115232.pdf '''Feline lifestyle vaccination protocols.''' Lappin, M. R.; The North American Veterinary Conference, Gainesville, USA, Small animal and exotics. Proceedings of the North American Veterinary Conference, Orlando, Florida, USA, 17-21 January, 2009, 2009, pp 621-624, 18 ref.]
   −
*Rabbits can be vaccinated against [[Poxviruses#Leporipoxviruses|Myxomatosis]] from 6 weeks of age
+
[http://www.cabi.org/cabdirect/FullTextPDF/2007/20073166574.pdf '''Immunological basis of vaccination.''' Lunn, D. P.; The North American Veterinary Conference, Gainesville, USA, Large animal. Proceedings of the North American Veterinary Conference, Volume 21, Orlando, Florida, USA, 2007, 2007, pp 135-137]
   −
*HVD from 2½ to 3 months of age 
+
[http://www.cabi.org/cabdirect/FullTextPDF/2007/20073166575.pdf '''Equine vaccines: what works, what doesn't?''' Lunn, D. P.; The North American Veterinary Conference, Gainesville, USA, Large animal. Proceedings of the North American Veterinary Conference, Volume 21, Orlando, Florida, USA, 2007, 2007, pp 138-140]
   −
*Booster vaccinations are given every 12 months. In areas at high risk of myxomatosis, it is recommended to give myxomatosis boosters at six-monthly intervals.
+
|Vetstream = [https://www.vetstream.com/canis/Content/Freeform/fre00859.asp Vaccination Protocol]
 +
}}
    
==Links==
 
==Links==
 
+
:[[:Category:Viral Organisms|Viruses A to Z]]
*[[Clinical Case 3|Myxomatosis Clinical Case]]
+
:[[:Category:Bacterial Organisms|Bacteria A to Z]]
 
  −
*[[Viruses|Viruses A to Z]]
      
==References==
 
==References==
    +
'''Textbooks'''
 
*Ivan Roitt: '''Essential Immunology,''' Ninth edition
 
*Ivan Roitt: '''Essential Immunology,''' Ninth edition
   −
*B.Cathchpole RVC
+
'''Lecture Notes'''
 
+
*Dr Brian Catchpole BVetMed PhD MRCVS
==Creators==
+
*Dr Peter H Russell BVSc MSc PhD MRCVS FRCPath
 
  −
[[Natalie Brown]]
     −
<big><center>[[Immunology - WikiBlood|'''BACK TO IMMUNOLOGY''']]</center></big>
+
<br><br>
<big><center>[[Host invasion by microorganisms - WikiBlood|'''BACK TO HOST INVASION BY MICROORGANISMS''']]</center></big>
+
{{Jim Bee 2007}}
 +
[[Category:Immunology]]
147

edits